Bulk protonic conductivity in a cephalopod structural protein

Proton-conducting materials play a central role in many renewable energy and bioelectronics technologies, including fuel cells, batteries and sensors. Thus, much research effort has been expended to develop improved proton-conducting materials, such as ceramic oxides, solid acids, polymers and metal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2014-07, Vol.6 (7), p.596-602
Hauptverfasser: Ordinario, David D., Phan, Long, Walkup IV, Ward G., Jocson, Jonah-Micah, Karshalev, Emil, Hüsken, Nina, Gorodetsky, Alon A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proton-conducting materials play a central role in many renewable energy and bioelectronics technologies, including fuel cells, batteries and sensors. Thus, much research effort has been expended to develop improved proton-conducting materials, such as ceramic oxides, solid acids, polymers and metal–organic frameworks. Within this context, bulk proton conductors from naturally occurring proteins have received somewhat less attention than other materials, which is surprising given the potential modularity, tunability and processability of protein-based materials. Here, we report proton conductivity for thin films composed of reflectin, a cephalopod structural protein. Bulk reflectin has a proton conductivity of ~2.6 × 10 –3  S cm –1 at 65 °C, a proton transport activation energy of ~0.2 eV and a proton mobility of ~7 × 10 –3 cm 2 V –1 s –1 . These figures of merit are similar to those reported for state-of-the-art artificial proton conductors and make it possible to use reflectin in protein-based protonic transistors. Our findings may hold implications for the next generation of biocompatible proton-conducting materials and protonic devices. Proton-conducting materials have proved useful for renewable energy applications and bioelectronics technologies. The proton conductivity of thin films made from reflectin — a cephalopod structural protein — is now reported. Reflectin's electrical properties compare favourably to those of artificial materials, and have enabled the demonstration of protein-based protonic transistors.
ISSN:1755-4330
1755-4349
DOI:10.1038/nchem.1960