Sensitivity of Precipitation Statistics to Resolution, Microphysics, and Convective Parameterization: A Case Study with the High-Resolution WRF Climate Model over Europe
We explore the impact of different resolutions, convective closures, and microphysical parameterizations on the representation of precipitation statistics (climatology, seasonal cycle, and intense events) in 20-yr-long simulations over Europe with the regional climateWeather Research and Forecasting...
Gespeichert in:
Veröffentlicht in: | Journal of hydrometeorology 2015-08, Vol.16 (4), p.1857-1872 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explore the impact of different resolutions, convective closures, and microphysical parameterizations on the representation of precipitation statistics (climatology, seasonal cycle, and intense events) in 20-yr-long simulations over Europe with the regional climateWeather Research and Forecasting (WRF) Model. The simulations are forced in the period 1979–98, using as boundary conditions the ERA-Interim fields over the European region. Special attention is paid to the representation of precipitation in the Alpine area. We consider spatial resolutions ranging from 0.11° to 0.037°, allowing for an explicit representation of convection at the highest resolution. Our results show that while there is a good overall agreement between observed and modeled precipitation patterns, the model outputs display a positive precipitation bias, particularly in winter. The choice of the microphysics scheme is shown to significantly affect the statistics of intense events. High resolution and explicitly resolved convection help to considerably reduce precipitation biases in summer and the reproduction of precipitation statistics. |
---|---|
ISSN: | 1525-755X 1525-7541 |
DOI: | 10.1175/JHM-D-14-0221.1 |