From nuclei to micro-structure in colloidal crystallization: Investigating intermediate length scales by small angle laser light scattering

Hard sphere suspensions are well recognized model systems of statistical physics and soft condensed matter. We here investigate the temporal evolution of the immediate environment of nucleating and growing crystals and/or their global scale distribution using time resolved Small Angle Light Scatteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2015-08, Vol.143 (6), p.064903-064903
Hauptverfasser: Beyer, Richard, Franke, Markus, Schöpe, Hans Joachim, Bartsch, Eckhard, Palberg, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hard sphere suspensions are well recognized model systems of statistical physics and soft condensed matter. We here investigate the temporal evolution of the immediate environment of nucleating and growing crystals and/or their global scale distribution using time resolved Small Angle Light Scattering (SALS). Simultaneously performed Bragg scattering measurements provide an accurate temporal gauging of the sequence of events. We apply this approach to studies of re-crystallization in several different shear molten hard sphere and attractive hard sphere samples with the focus being on the diversity of observable signal shapes and their change in time. We demonstrate that depending on the preparation conditions different processes occur on length scales larger than the structural scale, which significantly influence both the crystallization kinetics and the final micro-structure. By careful analysis of the SALS signal evolution and by comparing different suggestions for small angle signal shapes to our data, we can for most cases identify the processes leading to the observed signals. These include form factor scattering from crystals surrounded by depletion zones and structure factor scattering from late stage inter-crystallite ordering. The large variety of different small angle signals thus in principle contains valuable information complementary to that gained from Bragg scattering or microscopy. Our comparison, however, also shows that further refinement and adaptation of the theoretical expressions to the sample specific boundary conditions is desired for a quantitative kinetic analysis of micro-structural evolution.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4928370