Ligand Binding to Distinct Sites on Nanocrystals Affecting Energy and Charge Transfer

Hybrid optoelectronic devices are attractive because they offer the promise of low-cost, roll-to-roll fabrication. Despite this, energy transfer between organic and inorganic interfaces is not well understood. Device engineering on this class of solution-processed materials generally focuses on repl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2015-05, Vol.6 (9), p.1709-1713
Hauptverfasser: Li, Xin, Slyker, Lydia W, Nichols, Valerie M, Pau, George Shu Heng, Bardeen, Christopher J, Tang, Ming L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybrid optoelectronic devices are attractive because they offer the promise of low-cost, roll-to-roll fabrication. Despite this, energy transfer between organic and inorganic interfaces is not well understood. Device engineering on this class of solution-processed materials generally focuses on replacing the long insulating ligands with short ones. Here, we show that energy and charge transfer between an inorganic nanocrystal (NC) donor and organic molecular acceptor is acutely sensitive to the chemical moiety linking the two species. Our results reveal that the CdS NCs have distinct binding sites for different chemical species because only resonance energy transfer (RET) is observed for the carboxylic-acid-functionalized ligand, while both RET and charge transfer are observed for the amine-functionalized ligand. We observe that the equilibrium constant for this static quenching term increases with decreasing particle size. This finding offers a new approach in the design of hybrid thin films for devices and NC probes based on RET used for imaging, sensing, signal transduction, and photon management.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.5b00574