Metal Iodate-Based Energetic Composites and Their Combustion and Biocidal Performance
The biological agents that can be weaponized, such as Bacillus anthracis, pose a considerable potential public threat. Bacterial spores, in particular, are highly stress resistant and cannot be completely neutralized by common bactericides. This paper reports on synthesis of metal iodate-based alumi...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2015-08, Vol.7 (31), p.17363-17370 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The biological agents that can be weaponized, such as Bacillus anthracis, pose a considerable potential public threat. Bacterial spores, in particular, are highly stress resistant and cannot be completely neutralized by common bactericides. This paper reports on synthesis of metal iodate-based aluminized electrospray-assembled nanocomposites which neutralize spores through a combined thermal and chemical mechanism. Here metal iodates (Bi(IO3)3, Cu(IO3)2, and Fe(IO3)3) act as a strong oxidizer to nanoaluminum to yield a very exothermic and violent reaction, and simultaneously generate iodine as a long-lived bactericide. These microparticle-assembled nanocomposites when characterized in terms of reaction times and temporal pressure release show significantly improved reactivity. Furthermore, sporicidal performance superior to conventional metal-oxide-based thermites clearly shows the advantages of combining both a thermal and biocidal mechanism in spore neutralization. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.5b04589 |