Text mixing shapes the anatomy of rank-frequency distributions
Natural languages are full of rules and exceptions. One of the most famous quantitative rules is Zipf's law, which states that the frequency of occurrence of a word is approximately inversely proportional to its rank. Though this "law" of ranks has been found to hold across disparate...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-05, Vol.91 (5), p.052811-052811, Article 052811 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Natural languages are full of rules and exceptions. One of the most famous quantitative rules is Zipf's law, which states that the frequency of occurrence of a word is approximately inversely proportional to its rank. Though this "law" of ranks has been found to hold across disparate texts and forms of data, analyses of increasingly large corpora since the late 1990s have revealed the existence of two scaling regimes. These regimes have thus far been explained by a hypothesis suggesting a separability of languages into core and noncore lexica. Here we present and defend an alternative hypothesis that the two scaling regimes result from the act of aggregating texts. We observe that text mixing leads to an effective decay of word introduction, which we show provides accurate predictions of the location and severity of breaks in scaling. Upon examining large corpora from 10 languages in the Project Gutenberg eBooks collection, we find emphatic empirical support for the universality of our claim. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.91.052811 |