Contrasting effects of electroconvulsive shock on mRNAs encoding the high affinity kainate receptor subunits (KA1 and KA2) and cyclophilin in the rat

Kainate-preferring glutamate receptors may contribute to the glutamatergic responses to seizures. The cloning of their encoding genes overcomes limitations of the receptor ligands available for their investigation. We have examined the expression of the high affinity kainate receptor subunits KA1 an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 1996-02, Vol.710 (1-2), p.97-102
Hauptverfasser: PORTER, R. H. P, BURNET, P. W. J, EASTWOOD, S. L, HARRISON, P. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kainate-preferring glutamate receptors may contribute to the glutamatergic responses to seizures. The cloning of their encoding genes overcomes limitations of the receptor ligands available for their investigation. We have examined the expression of the high affinity kainate receptor subunits KA1 and KA2 mRNAs in the rat hippocampus, using electroconvulsive shock (ECS) as a seizure paradigm not confounded by neurotoxicity. A single shock reduced the levels of KA1 mRNA in the CA3c region, while increasing the expression of KA2 mRNA in the dentate gyrus. Following repeated ECS (5 shocks over 10 days), KA1 mRNA was reduced in CA3c and in CA3a-b but was unchanged in dentate gyrus. KA2 mRNA, on the other hand, significantly increased in dentate gyrus, and to a lesser extent in CA3c and CA1. All changes in KA1 and KA2 mRNAs had returned to baseline 3 weeks after the last shock. We also measured the expression of cyclophilin mRNA, and found it to be reduced in all hippocampal subfields, and in the parietal cortex, after a single ECS. It returned to control levels after repeated ECS but was again reduced following 3 weeks recovery from repeated ECS. These results indicate that the expression of KA1 and KA2 not only change in opposite directions in the rat hippocampus after ECS, but that the alterations are anatomically and temporally regulated. In the respect that cyclophilin is regarded as a housekeeping gene, the reduction in its mRNA suggests that ECS may have more persistent and widespread effects on brain gene expression than previously suspected.
ISSN:0006-8993
1872-6240
DOI:10.1016/0006-8993(95)01377-6