Heterocyclic scaffolds as promising anticancer agents against tumours of the central nervous system: Exploring the scope of indole and carbazole derivatives
Tumours of the central nervous system are intrinsically more dangerous than tumours at other sites, and in particular, brain tumours are responsible for 3% of cancer deaths in the UK. Despite this, research into new therapies only receives 1% of national cancer research spend. The most common chemot...
Gespeichert in:
Veröffentlicht in: | European journal of medicinal chemistry 2015-06, Vol.97, p.552-560 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tumours of the central nervous system are intrinsically more dangerous than tumours at other sites, and in particular, brain tumours are responsible for 3% of cancer deaths in the UK. Despite this, research into new therapies only receives 1% of national cancer research spend. The most common chemotherapies are temozolomide, procarbazine, carmustine, lomustine and vincristine, but because of the rapid development of chemoresistance, these drugs alone simply aren't sufficient for long-term treatment. Such poor prognosis of brain tumour patients prompted us to research new treatments for malignant glioma, and in doing so, it became apparent that aromatic heterocycles play an important part, especially the indole, carbazole and indolocarbazole scaffolds. This review highlights compounds in development for the treatment of tumours of the central nervous system which are structurally based on the indole, carbazole and indolocarbazole scaffolds, under the expectation that it will highlight new avenues for research for the development of new compounds to treat these devastating neoplasms.
[Display omitted]
•Brain cancer mortality rates are much higher than other cancers.•Overcoming the blood brain barrier is problematic in drug design.•Indole and carbazole analogues are good scaffolds for designing new drugs.•Their rigidity and ease of synthesis is beneficial in analogue preparation. |
---|---|
ISSN: | 0223-5234 1768-3254 |
DOI: | 10.1016/j.ejmech.2014.11.007 |