Biofouling of surgical power tools during routine use
Summary Surgical power tools (SPTs) are frequently used in many surgical specialties such as dentistry, orthopaedics, ophthalmology, neurology, and podiatry. They have complex designs that may restrict access to cleaning and sterilization agents and frequently become contaminated with microbial and...
Gespeichert in:
Veröffentlicht in: | The Journal of hospital infection 2015-07, Vol.90 (3), p.179-185 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary Surgical power tools (SPTs) are frequently used in many surgical specialties such as dentistry, orthopaedics, ophthalmology, neurology, and podiatry. They have complex designs that may restrict access to cleaning and sterilization agents and frequently become contaminated with microbial and tissue residues following use. Due to these challenges, surgical power tools can be considered the weak link in the decontamination cycle and present a potential for iatrogenic transmission of infection. We aimed to review the existing literature on the decontamination of surgical power tools and associated iatrogenic transmission of infection. A search of the medical literature was performed using Ovid online using the following databases: Ovid Medline 1950–2014, Embase 1980–2014, and EBM Reviews Full Text – Cochrane DSR, ACP Journal Club, and Dare. Despite challenges to decontamination processes, reported episodes of iatrogenic infection directly linked to SPTs appear rare. This may reflect a true picture but more likely represents incomplete reporting, failure to investigate power tools, or lack of surveillance linking surgical site infections (SSIs) to power tools. Healthcare professionals should be aware of the complexities associated with the decontamination of different SPTs, and should review manufacturers' reprocessing instructions prior to purchase. More clarity is required in the manufacturers' validation of these reprocessing instructions. This particularly applies to the emerging surgical robot systems that present extreme challenges to decontamination between uses. Investigation of cross-infection incidents or SSI surveillance should include an element of assessment of SPT decontamination to further elucidate the contribution of SPTs to skin and soft tissue infections. |
---|---|
ISSN: | 0195-6701 1532-2939 |
DOI: | 10.1016/j.jhin.2015.03.006 |