Human glutathione S-transferase T1-1 enhances mutagenicity of 1,2-dibromoethane, dibromomethane and 1,2,3,4-diepoxybutane in Salmonella typhimurium

The rat theta class glutathione S-transferase (GST) 5-5 has been shown to affect the mutagenicity of halogenated alkanes and epoxides. In Salmonella typhimurium TA1535 expressing the rat GST5-5 the number of revertants was increased compared to the control strain by CH2Br2, ethylene dibromide (EDB)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carcinogenesis (New York) 1996, Vol.17 (1), p.163-166
Hauptverfasser: THIER, R, PEMBLE, S. E, KRAMER, H, TAYLOR, J. B, GUENGERICH, F. P, KETTERER, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rat theta class glutathione S-transferase (GST) 5-5 has been shown to affect the mutagenicity of halogenated alkanes and epoxides. In Salmonella typhimurium TA1535 expressing the rat GST5-5 the number of revertants was increased compared to the control strain by CH2Br2, ethylene dibromide (EDB) and 1,2,3,4-diepoxybutane (BDE); in contrast, mutagenicity of 1,2-epoxy-3-(4'-nitro-phenoxy)propane (EPNP) was reduced. S.typhimurium TA1535 cells were transformed with an expression plasmid carrying the cDNA of the human theta ortholog GST1-1 either in sense or antisense orientation, the latter being the control. These transformed bacteria were utilized for mutagenicity assays. Mutagenicity of EDB, BDE, CH2Br2, epibromohydrin and 1,3-dichloroacetone was higher in the S.typhimurium TA1535 expressing GSTT1-1 than in the control strain. The expression of active enzyme did not affect the mutagenicity of 1,2-epoxy-3-butene or propylene oxide. GSTT1-1 expression reduced the mutagenicity of EPNP. Glutathione S-transferase 5-5 and GSTT1-1 modulate genotoxicity of several industrially important chemicals in the same way. Polymorphism of the GSTT1 locus in humans may therefore cause differences in cancer susceptibility between the two phenotypes.
ISSN:0143-3334
1460-2180
DOI:10.1093/carcin/17.1.163