Single-Crystal to Single-Crystal Mechanical Contraction of Metal–Organic Frameworks through Stereoselective Postsynthetic Bromination

The properties of metal–organic frameworks (MOFs) can be tuned by postsynthetic modification (PSM) to introduce specific functionalities after their synthesis. Typically, PSM is carried out on pendant functional groups or through metal/ligand exchange, preserving the structure of the MOF. We report...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2015-08, Vol.137 (30), p.9527-9530
Hauptverfasser: Marshall, Ross J, Griffin, Sarah L, Wilson, Claire, Forgan, Ross S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The properties of metal–organic frameworks (MOFs) can be tuned by postsynthetic modification (PSM) to introduce specific functionalities after their synthesis. Typically, PSM is carried out on pendant functional groups or through metal/ligand exchange, preserving the structure of the MOF. We report herein the bromination of integral alkyne units in a pair of Zr4+ and Hf4+ MOFs, which proceeds stereoselectively in a single-crystal to single-crystal manner. The chemical and mechanical changes in the MOFs are extensively characterized, including the crystal structures of the postsynthetically brominated materials, which show a mechanical contraction of up to 3.7% in volume. The combination of stability and chemical reactivity in these MOFs leads to the possibility of tuning mechanical properties by chemical transformation while also opening up new routes to internal pore functionalization.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.5b05434