Fibroblast growth factor receptors (FGFRs) localize in different cellular compartments. A splice variant of FGFR-3 localizes to the nucleus

We have raised specific antibodies to the second immunoglobulin-like domain of fibroblast growth factor receptors (FGFRs) and used these to investigate the expression and subcellular localization of FGFR-1, -2, -3, and -4 in breast epithelial cells. All four receptors classes could be detected in br...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1995-12, Vol.270 (51), p.30643-30650
Hauptverfasser: Johnston, C L, Cox, H C, Gomm, J J, Coombes, R C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have raised specific antibodies to the second immunoglobulin-like domain of fibroblast growth factor receptors (FGFRs) and used these to investigate the expression and subcellular localization of FGFR-1, -2, -3, and -4 in breast epithelial cells. All four receptors classes could be detected in breast cell lines; however, FGFR-4 and FGFR-2 appeared to be expressed at a higher level in breast cancer cell lines than in normal epithelial cells. Surprisingly, FGFR-3 localized in the cell nucleus by immunofluorescence. A second antibody to a separate epitope confirmed this finding and showed that the form of FGFR-3 present must contain an intact kinase domain as well as the growth factor binding domain. Western analysis of fractionated cells revealed the presence of two forms of FGFR-3 of 135 and 110 kDa. The 110-kDa form was predominantly found in the nucleus, whereas the 135 kDa form was sometimes found in the nucleus. RT-PCR analysis of FGFR-3 mRNA showed the presence of a splice variant in which exons 7 and 8 are deleted. This results in the translation of FGFR-3 missing the transmembrane domain but with an intact kinase domain, which could be a soluble, intracellular receptor. Transfection experiments showed that FGFR-3 containing this deletion and no signal peptide gave an identical nuclear staining pattern to that seen in breast epithelial cells. We conclude that two forms of FGFR-3 are present in breast epithelial cells; a full-length 135-kDa receptor, which has a conventional membrane localization, and a novel soluble form of 110 kDa.
ISSN:0021-9258
DOI:10.1074/jbc.270.51.30643