Post-transcriptional Regulation of Keratinocyte Progenitor Cell Expansion, Differentiation and Hair Follicle Regression by miR-22: e1005253

Hair follicles (HF) undergo precisely regulated recurrent cycles of growth, cessation, and rest. The transitions from anagen (growth), to catagen (regression), to telogen (rest) involve a physiological involution of the HF. This process is likely coordinated by a variety of mechanisms including apop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2015-05, Vol.11 (5)
Hauptverfasser: Yuan, Shukai, Li, Feifei, Meng, Qingyong, Zhao, Yiqiang, Chen, Lei, Zhang, Hongquan, Xue, Lixiang, Zhang, Xiuqing, Lengner, Christopher, Yu, Zhengquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hair follicles (HF) undergo precisely regulated recurrent cycles of growth, cessation, and rest. The transitions from anagen (growth), to catagen (regression), to telogen (rest) involve a physiological involution of the HF. This process is likely coordinated by a variety of mechanisms including apoptosis and loss of growth factor signaling. However, the precise molecular mechanisms underlying follicle involution after hair keratinocyte differentiation and hair shaft assembly remain poorly understood. Here we demonstrate that a highly conserved microRNA, miR-22 is markedly upregulated during catagen and peaks in telogen. Using gain- and loss-of-function approaches in vivo, we find that miR-22 overexpression leads to hair loss by promoting anagen-to-catagen transition of the HF, and that deletion of miR-22 delays entry to catagen and accelerates the transition from telogen to anagen. Ectopic activation of miR-22 results in hair loss due to the repression a hair keratinocyte differentiation program and keratinocyte progenitor expansion, as well as promotion of apoptosis. At the molecular level, we demonstrate that miR-22 directly represses numerous transcription factors upstream of phenotypic keratin genes, including Dlx3, Foxn1, and Hoxc13. We conclude that miR-22 is a critical post-transcriptional regulator of the hair cycle and may represent a novel target for therapeutic modulation of hair growth.
ISSN:1553-7390
1553-7404
DOI:10.1371/journal.pgen.1005253