Cochlear nucleus whole mount explants promote the differentiation of neuronal stem cells from the cochlear nucleus in co-culture experiments

Abstract The cochlear nucleus is the first brainstem nucleus to receive sensory input from the cochlea. Depriving this nucleus of auditory input leads to cellular and molecular disorganization which may potentially be counteracted by the activation or application of stem cells. Neuronal stem cells (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2015-08, Vol.1616, p.58-70
Hauptverfasser: Rak, Kristen, Völker, Johannes, Jürgens, Lukas, Völker, Christine, Frenz, Silke, Scherzad, Agmal, Schendzielorz, Philipp, Jablonka, Sibylle, Mlynski, Robert, Radeloff, Andreas, Hagen, Rudolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The cochlear nucleus is the first brainstem nucleus to receive sensory input from the cochlea. Depriving this nucleus of auditory input leads to cellular and molecular disorganization which may potentially be counteracted by the activation or application of stem cells. Neuronal stem cells (NSCs) have recently been identified in the neonatal cochlear nucleus and a persistent neurogenic niche was demonstrated in this brainstem nucleus until adulthood. The present work investigates whether the neurogenic environment of the cochlear nucleus can promote the survival of engrafted NSCs and whether cochlear nucleus-derived NSCs can differentiate into neurons and glia in brain tissue. Therefore, cochlear nucleus whole-mount explants were co-cultured with NSCs extracted from either the cochlear nucleus or the hippocampus and compared to a second environment using whole-mount explants from the hippocampus. Factors that are known to induce neuronal differentiation were also investigated in these NSC-explant experiments. NSCs derived from the cochlear nucleus engrafted in the brain tissue and differentiated into all cells of the neuronal lineage. Hippocampal NSCs also immigrated in cochlear nucleus explants and differentiated into neurons, astrocytes and oligodendrocytes. Laminin expression was up-regulated in the cochlear nucleus whole-mounts and regulated the in vitro differentiation of NSCs from the cochlear nucleus. These experiments confirm a neurogenic environment in the cochlear nucleus and the capacity of cochlear nucleus-derived NSCs to differentiate into neurons and glia. Consequently, the presented results provide a first step for the possible application of stem cells to repair the disorganization of the cochlear nucleus, which occurs after hearing loss.
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2015.04.055