Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity

The neocortex contains diverse populations of excitatory neurons segregated by layer and further definable by their specific cortical and subcortical projection targets. The current study describes a systematic approach to identify molecular correlates of specific projection neuron classes in mouse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2015-02, Vol.25 (2), p.433-449
Hauptverfasser: Sorensen, Staci A, Bernard, Amy, Menon, Vilas, Royall, Joshua J, Glattfelder, Katie J, Desta, Tsega, Hirokawa, Karla, Mortrud, Marty, Miller, Jeremy A, Zeng, Hongkui, Hohmann, John G, Jones, Allan R, Lein, Ed S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The neocortex contains diverse populations of excitatory neurons segregated by layer and further definable by their specific cortical and subcortical projection targets. The current study describes a systematic approach to identify molecular correlates of specific projection neuron classes in mouse primary somatosensory cortex (S1), using a combination of in situ hybridization (ISH) data mining, marker gene colocalization, and combined retrograde labeling with ISH for layer-specific marker genes. First, we identified a large set of genes with specificity for each cortical layer, and that display heterogeneous patterns within those layers. Using these genes as markers, we find extensive evidence for the covariation of gene expression and projection target specificity in layer 2/3, 5, and 6, with individual genes labeling neurons projecting to specific subsets of target structures. The combination of gene expression and target specificity imply a great diversity of projection neuron classes that is similar to or greater than that of GABAergic interneurons. The covariance of these 2 phenotypic modalities suggests that these classes are both discrete and genetically specified.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bht243