Particle Coating-Dependent Interaction of Molecular Weight Fractionated Natural Organic Matter: Impacts on the Aggregation of Silver Nanoparticles

Ubiquitous natural organic matter (NOM) plays an important role in the aggregation state of engineered silver nanoparticles (AgNPs) in aquatic environment, which determines the transport, transformation, and toxicity of AgNPs. As various capping agents are used as coatings for nanoparticles and NOM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2015-06, Vol.49 (11), p.6581-6589
Hauptverfasser: Yin, Yongguang, Shen, Mohai, Tan, Zhiqiang, Yu, Sujuan, Liu, Jingfu, Jiang, Guibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ubiquitous natural organic matter (NOM) plays an important role in the aggregation state of engineered silver nanoparticles (AgNPs) in aquatic environment, which determines the transport, transformation, and toxicity of AgNPs. As various capping agents are used as coatings for nanoparticles and NOM are natural polymer mixture with wide molecular weight (MW) distribution, probing the particle coating-dependent interaction of MW fractionated natural organic matter (Mf-NOM) with various coatings is helpful for understanding the differential aggregation and transport behavior of engineered AgNPs as well as other metal nanoparticles. In this study, we investigated the role of pristine and Mf-NOM on the aggregation of AgNPs with Bare, citrate, and PVP coating (Bare-, Cit-, and PVP-AgNP) in mono- and divalent electrolyte solutions. We observed that the enhanced aggregation or dispersion of AgNPs in NOM solution highly depends on the coating of AgNPs. Pristine NOM inhibited the aggregation of Bare-AgNPs but enhanced the aggregation of PVP-AgNPs. In addition, Mf-NOM fractions have distinguishing roles on the aggregation and dispersion of AgNPs, which also highly depend on the AgNPs coating as well as the MW of Mf-NOM. Higher MW Mf-NOM (>100 kDa and 30–100 kDa) enhanced the aggregation of PVP-AgNPs in mono- and divalent electrolyte solutions, whereas lower MW Mf-NOM (10–30 kDa, 3–10 kDa and
ISSN:0013-936X
1520-5851
DOI:10.1021/es5061287