Predicting competitive shifts and responses to climate change based on latitudinal distributions of species assemblages

Many terrestrial plant and marine benthic communities involve intense competition for space as a means to survive and reproduce. Superior competitors can dominate other species numerically with high reproductive rates, indirectly with high growth rates that facilitate space acquisition, or directly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2015-05, Vol.96 (5), p.1264-1274
Hauptverfasser: Lord, Joshua, Whitlatch, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many terrestrial plant and marine benthic communities involve intense competition for space as a means to survive and reproduce. Superior competitors can dominate other species numerically with high reproductive rates, indirectly with high growth rates that facilitate space acquisition, or directly with competitive overgrowth. To assess how climate change could affect competitive interactions, we examined latitudinal patterns in growth rates and overgrowth competition via field surveys and experiments with marine epibenthic communities. Epibenthic fouling communities are dominated by invasive tunicates, bryozoans, and other species that grow on docks, boats, and other artificial structures. Fouling communities are space limited, so growth rate and overgrowth competition play an important role in shaping abundance patterns. We experimentally assessed temperature-dependent growth rates of several tunicates and bryozoans in eight regions spanning the U.S. east and west coasts. Several species displayed positive growth responses to warmer temperature in the northern portions of their latitudinal ranges, and vice versa. We used photo surveys of floating docks in at least 16 harbors in each region to compare communities and overgrowth competition. There was a strong correlation across species and regions between growth rate and competitive ability, indicating that growth plays an important role in competitive outcomes. Because growth rates are typically temperature dependent for organisms that compete for space, including terrestrial plants, fungi, algae, bacteria, and sessile benthic organisms, global warming could affect competitive outcomes. Our results suggest that these competitive shifts can be predicted by species' relative growth rates and latitudinal ranges.
ISSN:0012-9658
1939-9170
DOI:10.1890/14-0403.1