Modelling of Texture Evolution in High Pressure Torsion by Crystal Plasticity Finite Element Method

In this study, texture evolution during high pressure torsion (HPT) of aluminum single crystal is predicted by the crystal plasticity finite element method (CPFEM) model integrating the crystal plasticity constitutive theory with Bassani & Wu hardening model. It has been found by the simulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2015-05, Vol.764-765 (Modern Design Technologies and Experiment for Advanced Manufacture and Industry), p.56-60
Hauptverfasser: Wei, Pei Tang, Tieu, Kiet, Deng, Guan Yu, Lu, Cheng, Zhang, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, texture evolution during high pressure torsion (HPT) of aluminum single crystal is predicted by the crystal plasticity finite element method (CPFEM) model integrating the crystal plasticity constitutive theory with Bassani & Wu hardening model. It has been found by the simulation that, during the HPT process, the lattice rotates mainly around the radial direction of the sample. With increasing HPT deformation, the initial cube orientation rotates progressively to the rotated cube orientation, and then to the C component of ideal torsion texture which could be remained over a wide strain range. Further HPT deformation leads to the orientation towards to the ideal texture component.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.764-765.56