Analysis of the Impact of 2-Methylfuran on Mixture Formation and Combustion in a Direct-Injection Spark-Ignition Engine

Within the Cluster of Excellence “Tailor-Made Fuels from Biomass”, a new reaction sequence to transform biomass into 2-methylfuran has been developed. In the present study, the influence of this potential biofuel on in-cylinder spray formation and evaporation as well as engine performance is studied...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2011-12, Vol.25 (12), p.5549-5561
Hauptverfasser: Thewes, Matthias, Muether, Martin, Pischinger, Stefan, Budde, Matthias, Brunn, André, Sehr, Andreas, Adomeit, Philipp, Klankermayer, Juergen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Within the Cluster of Excellence “Tailor-Made Fuels from Biomass”, a new reaction sequence to transform biomass into 2-methylfuran has been developed. In the present study, the influence of this potential biofuel on in-cylinder spray formation and evaporation as well as engine performance is studied experimentally using a direct-injection spark-ignition single-cylinder research engine. The results obtained for 2-methylfuran are benchmarked against investigation on the same engine using conventional research octane number (RON) 95 fuel and ethanol. The in-cylinder spray formation and evaporation process is characterized by high-speed Mie scattering visualizations, indicating quicker evaporation of 2-methylfuran compared to ethanol. Engine experiments support the findings of the optical measurements by revealing excellent combustion stability, especially in cold conditions, combined with a hydrocarbon emission reduction of at least 61 % in the relevant spark timing range compared to conventional fuel. The enleanment capability was also found to be higher by 0.16 units of relative air/fuel ratio. A noticeable drawback resulting from the combustion of 2-methylfuran is higher emissions of nitrogen oxides. The knock resistance of 2-methylfuran at full load is significantly better compared to RON 95, however, worse than ethanol. It allows for a compression ratio increase of more than 3.5 units compared to RON 95. The measured efficiency benefits with a compression ratio increase of 3.5 units range up to 9.9 % at full load.
ISSN:0887-0624
1520-5029
DOI:10.1021/ef201021a