Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system
► Hybrid intelligent system for arrhythmia classification. ► Combination of fuzzy KNN with neural networks with Mamdani fuzzy system. ► ECG signal transformation for improving classification results. In this paper we describe a hybrid intelligent system for classification of cardiac arrhythmias. The...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2012-02, Vol.39 (3), p.2947-2955 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2955 |
---|---|
container_issue | 3 |
container_start_page | 2947 |
container_title | Expert systems with applications |
container_volume | 39 |
creator | Castillo, Oscar Melin, Patricia Ramírez, Eduardo Soria, José |
description | ► Hybrid intelligent system for arrhythmia classification. ► Combination of fuzzy KNN with neural networks with Mamdani fuzzy system. ► ECG signal transformation for improving classification results.
In this paper we describe a hybrid intelligent system for classification of cardiac arrhythmias. The hybrid approach was tested with the ECG records of the MIT-BIH Arrhythmia Database. The samples considered for classification contained arrhythmias of the following types: LBBB, RBBB, PVC and Fusion Paced and Normal, as well as the normal heartbeats. The signals of the arrhythmias were segmented and transformed for improving the classification results. Three methods of classification were used: Fuzzy K-Nearest Neighbors, Multi Layer Perceptron with Gradient Descent and momentum Backpropagation, and Multi Layer Perceptron with Scaled Conjugate Gradient Backpropagation. Finally, a Mamdani type fuzzy inference system was used to combine the outputs of the individual classifiers, and a very high classification rate of 98% was achieved. |
doi_str_mv | 10.1016/j.eswa.2011.08.156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701106849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417411012875</els_id><sourcerecordid>1010872021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-c798e2369a6b2c435870942134238724b0186e8c076723bd86789d0604aa02af3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS1EJZaFP8DJRy5Jx3bWdiQuqKK0oioXOFuOM-l6SeJie1mlf4K_XC_hDKe5vG_ezHuEvGNQM2Dy8lBjOtmaA2M16Jrt5AuyYVqJSqpWvCQbaHeqaphqXpHXKR0AmAJQG_L7Zumi76mfM46jf8A507SkjBMdQqTOxt5bR22M-yXvJ2-pG21KfvDOZh9mevJ5T6-PT08L_VLdo42YMr1H_7DvQkzUzj2d8RjtWEY-hfgjURemzs_Yr6ylwx96dX1DLgY7Jnz7d27J9-tP365uqruvn2-vPt5VTkiZK6dajVzI1sqOu0bstIK24Uw0XGjFmw6YlqgdKKm46HotlW57kNBYC9wOYkver3sfY_h5LDebySdXIrAzhmMyJR7GQOqm_b8UGBRPKO5bwlepiyGliIN5jH6ycSmis06agzkXZc5FGdCmFFWgDyuE5d9fHqNJzuPssPcRXTZ98P_CnwHXrp3j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010872021</pqid></control><display><type>article</type><title>Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Castillo, Oscar ; Melin, Patricia ; Ramírez, Eduardo ; Soria, José</creator><creatorcontrib>Castillo, Oscar ; Melin, Patricia ; Ramírez, Eduardo ; Soria, José</creatorcontrib><description>► Hybrid intelligent system for arrhythmia classification. ► Combination of fuzzy KNN with neural networks with Mamdani fuzzy system. ► ECG signal transformation for improving classification results.
In this paper we describe a hybrid intelligent system for classification of cardiac arrhythmias. The hybrid approach was tested with the ECG records of the MIT-BIH Arrhythmia Database. The samples considered for classification contained arrhythmias of the following types: LBBB, RBBB, PVC and Fusion Paced and Normal, as well as the normal heartbeats. The signals of the arrhythmias were segmented and transformed for improving the classification results. Three methods of classification were used: Fuzzy K-Nearest Neighbors, Multi Layer Perceptron with Gradient Descent and momentum Backpropagation, and Multi Layer Perceptron with Scaled Conjugate Gradient Backpropagation. Finally, a Mamdani type fuzzy inference system was used to combine the outputs of the individual classifiers, and a very high classification rate of 98% was achieved.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2011.08.156</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Arrhythmia ; Arrhythmia classification ; Back propagation ; Classification ; Fuzzy ; Fuzzy KNN ; Fuzzy logic ; Fuzzy set theory ; Mamdani fuzzy system ; Neural network ; Neural networks</subject><ispartof>Expert systems with applications, 2012-02, Vol.39 (3), p.2947-2955</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-c798e2369a6b2c435870942134238724b0186e8c076723bd86789d0604aa02af3</citedby><cites>FETCH-LOGICAL-c366t-c798e2369a6b2c435870942134238724b0186e8c076723bd86789d0604aa02af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2011.08.156$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Castillo, Oscar</creatorcontrib><creatorcontrib>Melin, Patricia</creatorcontrib><creatorcontrib>Ramírez, Eduardo</creatorcontrib><creatorcontrib>Soria, José</creatorcontrib><title>Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system</title><title>Expert systems with applications</title><description>► Hybrid intelligent system for arrhythmia classification. ► Combination of fuzzy KNN with neural networks with Mamdani fuzzy system. ► ECG signal transformation for improving classification results.
In this paper we describe a hybrid intelligent system for classification of cardiac arrhythmias. The hybrid approach was tested with the ECG records of the MIT-BIH Arrhythmia Database. The samples considered for classification contained arrhythmias of the following types: LBBB, RBBB, PVC and Fusion Paced and Normal, as well as the normal heartbeats. The signals of the arrhythmias were segmented and transformed for improving the classification results. Three methods of classification were used: Fuzzy K-Nearest Neighbors, Multi Layer Perceptron with Gradient Descent and momentum Backpropagation, and Multi Layer Perceptron with Scaled Conjugate Gradient Backpropagation. Finally, a Mamdani type fuzzy inference system was used to combine the outputs of the individual classifiers, and a very high classification rate of 98% was achieved.</description><subject>Arrhythmia</subject><subject>Arrhythmia classification</subject><subject>Back propagation</subject><subject>Classification</subject><subject>Fuzzy</subject><subject>Fuzzy KNN</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Mamdani fuzzy system</subject><subject>Neural network</subject><subject>Neural networks</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS1EJZaFP8DJRy5Jx3bWdiQuqKK0oioXOFuOM-l6SeJie1mlf4K_XC_hDKe5vG_ezHuEvGNQM2Dy8lBjOtmaA2M16Jrt5AuyYVqJSqpWvCQbaHeqaphqXpHXKR0AmAJQG_L7Zumi76mfM46jf8A507SkjBMdQqTOxt5bR22M-yXvJ2-pG21KfvDOZh9mevJ5T6-PT08L_VLdo42YMr1H_7DvQkzUzj2d8RjtWEY-hfgjURemzs_Yr6ylwx96dX1DLgY7Jnz7d27J9-tP365uqruvn2-vPt5VTkiZK6dajVzI1sqOu0bstIK24Uw0XGjFmw6YlqgdKKm46HotlW57kNBYC9wOYkver3sfY_h5LDebySdXIrAzhmMyJR7GQOqm_b8UGBRPKO5bwlepiyGliIN5jH6ycSmis06agzkXZc5FGdCmFFWgDyuE5d9fHqNJzuPssPcRXTZ98P_CnwHXrp3j</recordid><startdate>20120215</startdate><enddate>20120215</enddate><creator>Castillo, Oscar</creator><creator>Melin, Patricia</creator><creator>Ramírez, Eduardo</creator><creator>Soria, José</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120215</creationdate><title>Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system</title><author>Castillo, Oscar ; Melin, Patricia ; Ramírez, Eduardo ; Soria, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-c798e2369a6b2c435870942134238724b0186e8c076723bd86789d0604aa02af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arrhythmia</topic><topic>Arrhythmia classification</topic><topic>Back propagation</topic><topic>Classification</topic><topic>Fuzzy</topic><topic>Fuzzy KNN</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Mamdani fuzzy system</topic><topic>Neural network</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo, Oscar</creatorcontrib><creatorcontrib>Melin, Patricia</creatorcontrib><creatorcontrib>Ramírez, Eduardo</creatorcontrib><creatorcontrib>Soria, José</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo, Oscar</au><au>Melin, Patricia</au><au>Ramírez, Eduardo</au><au>Soria, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system</atitle><jtitle>Expert systems with applications</jtitle><date>2012-02-15</date><risdate>2012</risdate><volume>39</volume><issue>3</issue><spage>2947</spage><epage>2955</epage><pages>2947-2955</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>► Hybrid intelligent system for arrhythmia classification. ► Combination of fuzzy KNN with neural networks with Mamdani fuzzy system. ► ECG signal transformation for improving classification results.
In this paper we describe a hybrid intelligent system for classification of cardiac arrhythmias. The hybrid approach was tested with the ECG records of the MIT-BIH Arrhythmia Database. The samples considered for classification contained arrhythmias of the following types: LBBB, RBBB, PVC and Fusion Paced and Normal, as well as the normal heartbeats. The signals of the arrhythmias were segmented and transformed for improving the classification results. Three methods of classification were used: Fuzzy K-Nearest Neighbors, Multi Layer Perceptron with Gradient Descent and momentum Backpropagation, and Multi Layer Perceptron with Scaled Conjugate Gradient Backpropagation. Finally, a Mamdani type fuzzy inference system was used to combine the outputs of the individual classifiers, and a very high classification rate of 98% was achieved.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2011.08.156</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2012-02, Vol.39 (3), p.2947-2955 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701106849 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Arrhythmia Arrhythmia classification Back propagation Classification Fuzzy Fuzzy KNN Fuzzy logic Fuzzy set theory Mamdani fuzzy system Neural network Neural networks |
title | Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20intelligent%20system%20for%20cardiac%20arrhythmia%20classification%20with%20Fuzzy%20K-Nearest%20Neighbors%20and%20neural%20networks%20combined%20with%20a%20fuzzy%20system&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Castillo,%20Oscar&rft.date=2012-02-15&rft.volume=39&rft.issue=3&rft.spage=2947&rft.epage=2955&rft.pages=2947-2955&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2011.08.156&rft_dat=%3Cproquest_cross%3E1010872021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010872021&rft_id=info:pmid/&rft_els_id=S0957417411012875&rfr_iscdi=true |