Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system

► Hybrid intelligent system for arrhythmia classification. ► Combination of fuzzy KNN with neural networks with Mamdani fuzzy system. ► ECG signal transformation for improving classification results. In this paper we describe a hybrid intelligent system for classification of cardiac arrhythmias. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2012-02, Vol.39 (3), p.2947-2955
Hauptverfasser: Castillo, Oscar, Melin, Patricia, Ramírez, Eduardo, Soria, José
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2955
container_issue 3
container_start_page 2947
container_title Expert systems with applications
container_volume 39
creator Castillo, Oscar
Melin, Patricia
Ramírez, Eduardo
Soria, José
description ► Hybrid intelligent system for arrhythmia classification. ► Combination of fuzzy KNN with neural networks with Mamdani fuzzy system. ► ECG signal transformation for improving classification results. In this paper we describe a hybrid intelligent system for classification of cardiac arrhythmias. The hybrid approach was tested with the ECG records of the MIT-BIH Arrhythmia Database. The samples considered for classification contained arrhythmias of the following types: LBBB, RBBB, PVC and Fusion Paced and Normal, as well as the normal heartbeats. The signals of the arrhythmias were segmented and transformed for improving the classification results. Three methods of classification were used: Fuzzy K-Nearest Neighbors, Multi Layer Perceptron with Gradient Descent and momentum Backpropagation, and Multi Layer Perceptron with Scaled Conjugate Gradient Backpropagation. Finally, a Mamdani type fuzzy inference system was used to combine the outputs of the individual classifiers, and a very high classification rate of 98% was achieved.
doi_str_mv 10.1016/j.eswa.2011.08.156
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701106849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417411012875</els_id><sourcerecordid>1010872021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-c798e2369a6b2c435870942134238724b0186e8c076723bd86789d0604aa02af3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS1EJZaFP8DJRy5Jx3bWdiQuqKK0oioXOFuOM-l6SeJie1mlf4K_XC_hDKe5vG_ezHuEvGNQM2Dy8lBjOtmaA2M16Jrt5AuyYVqJSqpWvCQbaHeqaphqXpHXKR0AmAJQG_L7Zumi76mfM46jf8A507SkjBMdQqTOxt5bR22M-yXvJ2-pG21KfvDOZh9mevJ5T6-PT08L_VLdo42YMr1H_7DvQkzUzj2d8RjtWEY-hfgjURemzs_Yr6ylwx96dX1DLgY7Jnz7d27J9-tP365uqruvn2-vPt5VTkiZK6dajVzI1sqOu0bstIK24Uw0XGjFmw6YlqgdKKm46HotlW57kNBYC9wOYkver3sfY_h5LDebySdXIrAzhmMyJR7GQOqm_b8UGBRPKO5bwlepiyGliIN5jH6ycSmis06agzkXZc5FGdCmFFWgDyuE5d9fHqNJzuPssPcRXTZ98P_CnwHXrp3j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010872021</pqid></control><display><type>article</type><title>Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Castillo, Oscar ; Melin, Patricia ; Ramírez, Eduardo ; Soria, José</creator><creatorcontrib>Castillo, Oscar ; Melin, Patricia ; Ramírez, Eduardo ; Soria, José</creatorcontrib><description>► Hybrid intelligent system for arrhythmia classification. ► Combination of fuzzy KNN with neural networks with Mamdani fuzzy system. ► ECG signal transformation for improving classification results. In this paper we describe a hybrid intelligent system for classification of cardiac arrhythmias. The hybrid approach was tested with the ECG records of the MIT-BIH Arrhythmia Database. The samples considered for classification contained arrhythmias of the following types: LBBB, RBBB, PVC and Fusion Paced and Normal, as well as the normal heartbeats. The signals of the arrhythmias were segmented and transformed for improving the classification results. Three methods of classification were used: Fuzzy K-Nearest Neighbors, Multi Layer Perceptron with Gradient Descent and momentum Backpropagation, and Multi Layer Perceptron with Scaled Conjugate Gradient Backpropagation. Finally, a Mamdani type fuzzy inference system was used to combine the outputs of the individual classifiers, and a very high classification rate of 98% was achieved.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2011.08.156</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Arrhythmia ; Arrhythmia classification ; Back propagation ; Classification ; Fuzzy ; Fuzzy KNN ; Fuzzy logic ; Fuzzy set theory ; Mamdani fuzzy system ; Neural network ; Neural networks</subject><ispartof>Expert systems with applications, 2012-02, Vol.39 (3), p.2947-2955</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-c798e2369a6b2c435870942134238724b0186e8c076723bd86789d0604aa02af3</citedby><cites>FETCH-LOGICAL-c366t-c798e2369a6b2c435870942134238724b0186e8c076723bd86789d0604aa02af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2011.08.156$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Castillo, Oscar</creatorcontrib><creatorcontrib>Melin, Patricia</creatorcontrib><creatorcontrib>Ramírez, Eduardo</creatorcontrib><creatorcontrib>Soria, José</creatorcontrib><title>Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system</title><title>Expert systems with applications</title><description>► Hybrid intelligent system for arrhythmia classification. ► Combination of fuzzy KNN with neural networks with Mamdani fuzzy system. ► ECG signal transformation for improving classification results. In this paper we describe a hybrid intelligent system for classification of cardiac arrhythmias. The hybrid approach was tested with the ECG records of the MIT-BIH Arrhythmia Database. The samples considered for classification contained arrhythmias of the following types: LBBB, RBBB, PVC and Fusion Paced and Normal, as well as the normal heartbeats. The signals of the arrhythmias were segmented and transformed for improving the classification results. Three methods of classification were used: Fuzzy K-Nearest Neighbors, Multi Layer Perceptron with Gradient Descent and momentum Backpropagation, and Multi Layer Perceptron with Scaled Conjugate Gradient Backpropagation. Finally, a Mamdani type fuzzy inference system was used to combine the outputs of the individual classifiers, and a very high classification rate of 98% was achieved.</description><subject>Arrhythmia</subject><subject>Arrhythmia classification</subject><subject>Back propagation</subject><subject>Classification</subject><subject>Fuzzy</subject><subject>Fuzzy KNN</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Mamdani fuzzy system</subject><subject>Neural network</subject><subject>Neural networks</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS1EJZaFP8DJRy5Jx3bWdiQuqKK0oioXOFuOM-l6SeJie1mlf4K_XC_hDKe5vG_ezHuEvGNQM2Dy8lBjOtmaA2M16Jrt5AuyYVqJSqpWvCQbaHeqaphqXpHXKR0AmAJQG_L7Zumi76mfM46jf8A507SkjBMdQqTOxt5bR22M-yXvJ2-pG21KfvDOZh9mevJ5T6-PT08L_VLdo42YMr1H_7DvQkzUzj2d8RjtWEY-hfgjURemzs_Yr6ylwx96dX1DLgY7Jnz7d27J9-tP365uqruvn2-vPt5VTkiZK6dajVzI1sqOu0bstIK24Uw0XGjFmw6YlqgdKKm46HotlW57kNBYC9wOYkver3sfY_h5LDebySdXIrAzhmMyJR7GQOqm_b8UGBRPKO5bwlepiyGliIN5jH6ycSmis06agzkXZc5FGdCmFFWgDyuE5d9fHqNJzuPssPcRXTZ98P_CnwHXrp3j</recordid><startdate>20120215</startdate><enddate>20120215</enddate><creator>Castillo, Oscar</creator><creator>Melin, Patricia</creator><creator>Ramírez, Eduardo</creator><creator>Soria, José</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120215</creationdate><title>Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system</title><author>Castillo, Oscar ; Melin, Patricia ; Ramírez, Eduardo ; Soria, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-c798e2369a6b2c435870942134238724b0186e8c076723bd86789d0604aa02af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arrhythmia</topic><topic>Arrhythmia classification</topic><topic>Back propagation</topic><topic>Classification</topic><topic>Fuzzy</topic><topic>Fuzzy KNN</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Mamdani fuzzy system</topic><topic>Neural network</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo, Oscar</creatorcontrib><creatorcontrib>Melin, Patricia</creatorcontrib><creatorcontrib>Ramírez, Eduardo</creatorcontrib><creatorcontrib>Soria, José</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo, Oscar</au><au>Melin, Patricia</au><au>Ramírez, Eduardo</au><au>Soria, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system</atitle><jtitle>Expert systems with applications</jtitle><date>2012-02-15</date><risdate>2012</risdate><volume>39</volume><issue>3</issue><spage>2947</spage><epage>2955</epage><pages>2947-2955</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>► Hybrid intelligent system for arrhythmia classification. ► Combination of fuzzy KNN with neural networks with Mamdani fuzzy system. ► ECG signal transformation for improving classification results. In this paper we describe a hybrid intelligent system for classification of cardiac arrhythmias. The hybrid approach was tested with the ECG records of the MIT-BIH Arrhythmia Database. The samples considered for classification contained arrhythmias of the following types: LBBB, RBBB, PVC and Fusion Paced and Normal, as well as the normal heartbeats. The signals of the arrhythmias were segmented and transformed for improving the classification results. Three methods of classification were used: Fuzzy K-Nearest Neighbors, Multi Layer Perceptron with Gradient Descent and momentum Backpropagation, and Multi Layer Perceptron with Scaled Conjugate Gradient Backpropagation. Finally, a Mamdani type fuzzy inference system was used to combine the outputs of the individual classifiers, and a very high classification rate of 98% was achieved.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2011.08.156</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2012-02, Vol.39 (3), p.2947-2955
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_1701106849
source ScienceDirect Journals (5 years ago - present)
subjects Arrhythmia
Arrhythmia classification
Back propagation
Classification
Fuzzy
Fuzzy KNN
Fuzzy logic
Fuzzy set theory
Mamdani fuzzy system
Neural network
Neural networks
title Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20intelligent%20system%20for%20cardiac%20arrhythmia%20classification%20with%20Fuzzy%20K-Nearest%20Neighbors%20and%20neural%20networks%20combined%20with%20a%20fuzzy%20system&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Castillo,%20Oscar&rft.date=2012-02-15&rft.volume=39&rft.issue=3&rft.spage=2947&rft.epage=2955&rft.pages=2947-2955&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2011.08.156&rft_dat=%3Cproquest_cross%3E1010872021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010872021&rft_id=info:pmid/&rft_els_id=S0957417411012875&rfr_iscdi=true