Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system
► Hybrid intelligent system for arrhythmia classification. ► Combination of fuzzy KNN with neural networks with Mamdani fuzzy system. ► ECG signal transformation for improving classification results. In this paper we describe a hybrid intelligent system for classification of cardiac arrhythmias. The...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2012-02, Vol.39 (3), p.2947-2955 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ► Hybrid intelligent system for arrhythmia classification. ► Combination of fuzzy KNN with neural networks with Mamdani fuzzy system. ► ECG signal transformation for improving classification results.
In this paper we describe a hybrid intelligent system for classification of cardiac arrhythmias. The hybrid approach was tested with the ECG records of the MIT-BIH Arrhythmia Database. The samples considered for classification contained arrhythmias of the following types: LBBB, RBBB, PVC and Fusion Paced and Normal, as well as the normal heartbeats. The signals of the arrhythmias were segmented and transformed for improving the classification results. Three methods of classification were used: Fuzzy K-Nearest Neighbors, Multi Layer Perceptron with Gradient Descent and momentum Backpropagation, and Multi Layer Perceptron with Scaled Conjugate Gradient Backpropagation. Finally, a Mamdani type fuzzy inference system was used to combine the outputs of the individual classifiers, and a very high classification rate of 98% was achieved. |
---|---|
ISSN: | 0957-4174 1873-6793 |
DOI: | 10.1016/j.eswa.2011.08.156 |