Solving the traveling salesman problem using cooperative genetic ant systems

The travelling salesman problem (TSP) is a classic problem of combinatorial optimization and has applications in planning, scheduling, and searching in many scientific and engineering fields. Ant colony optimization (ACO) has been successfully used to solve TSPs and many associated applications in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2012-04, Vol.39 (5), p.5006-5011
Hauptverfasser: Dong, Gaifang, Guo, William W., Tickle, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The travelling salesman problem (TSP) is a classic problem of combinatorial optimization and has applications in planning, scheduling, and searching in many scientific and engineering fields. Ant colony optimization (ACO) has been successfully used to solve TSPs and many associated applications in the last two decades. However, ACO has problem in regularly reaching the global optimal solutions for TSPs due to enormity of the search space and numerous local optima within the space. In this paper, we propose a new hybrid algorithm, cooperative genetic ant system (CGAS) to deal with this problem. Unlike other previous studies that regarded GA as a sequential part of the whole searching process and only used the result from GA as the input to subsequent ACO iterations, this new approach combines both GA and ACO together in a cooperative manner to improve the performance of ACO for solving TSPs. The mutual information exchange between ACO and GA in the end of the current iteration ensures the selection of the best solutions for next iteration. This cooperative approach creates a better chance in reaching the global optimal solution because independent running of GA maintains a high level of diversity in next generation of solutions. Compared with results from other GA/ACO algorithms, our simulation shows that CGAS has superior performance over other GA and ACO algorithms for solving TSPs in terms of capability and consistency of achieving the global optimal solution, and quality of average optimal solutions, particularly for small TSPs.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2011.10.012