Global Exponential Stability of Impulsive Cohen-Grossberg-Type BAM Neural Networks with Time-Varying and Distributed Delays
The purpose of this paper is to investigate the global exponential stability of a class of impulsive bidirectional associative memories (BAM) neural networks that possesses Cohen-Grossberg dynamics. By constructing and using some inequality techniques and a fixed point theorem sufficient conditions...
Gespeichert in:
Veröffentlicht in: | International journal of applied physics and mathematics 2014-05, Vol.4 (3), p.196-200 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this paper is to investigate the global exponential stability of a class of impulsive bidirectional associative memories (BAM) neural networks that possesses Cohen-Grossberg dynamics. By constructing and using some inequality techniques and a fixed point theorem sufficient conditions are obtained to ensure the existence and global exponential stability of the solutions for impulsive Cohen-Grossberg neural networks with time delays and distributed delays. |
---|---|
ISSN: | 2010-362X 2010-362X |
DOI: | 10.7763/IJAPM.2014.V4.282 |