Research on error distribution of short-term wind power prediction

Short-term wind power prediction is a popular issue in the research field. This paper proposes t location-scale distribution to describe the errors distribution of wind power prediction. Based on the measured data in wind power plants, autoregressive integrated moving average model and back propagat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dianli Xitong Baohu yu Kongzhi 2013-06, Vol.41 (12), p.65-70
Hauptverfasser: Liu, Li-Yang, Wu, Jun-Ji, Meng, Shao-Liang
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Short-term wind power prediction is a popular issue in the research field. This paper proposes t location-scale distribution to describe the errors distribution of wind power prediction. Based on the measured data in wind power plants, autoregressive integrated moving average model and back propagation neural network are adopted to analyze the errors of two forecast models respectively, proving that the t location-scale distribution can describe effectively the frequency distribution of forecast errors, and the specific research data show that the goodness of fit of t location-scale distribution is better than that of normal distribution. Parameters of t location-scale distribution, as the indicators for judging the accuracy degree of the prediction algorithm, make it available to analyze its performance directly.
ISSN:1674-3415