Highly conductive multilayer-graphene paper as a flexible lightweight electromagnetic shield

A graphene-based porous paper made of multilayer graphene (MLG) microsheets is developed for application as a flexible electrically conducting shielding material at radio frequency. The production process is based on the thermal expansion of a graphite intercalated compound, the successive liquid-ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2015-08, Vol.89, p.260-271
Hauptverfasser: Paliotta, L., De Bellis, G., Tamburrano, A., Marra, F., Rinaldi, A., Balijepalli, S.K., Kaciulis, S., Sarto, M.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graphene-based porous paper made of multilayer graphene (MLG) microsheets is developed for application as a flexible electrically conducting shielding material at radio frequency. The production process is based on the thermal expansion of a graphite intercalated compound, the successive liquid-phase exfoliation of the resulting expanded graphite in a proper solvent, and finally the vacuum filtration of the MLG-suspension using a nanoporous alumina membrane. Enhancement of the electrical conductivity and electromagnetic shielding properties of the MLG paper is achieved by gentle annealing at 250 [degrees]C overnight, and by mechanical compression at 5 MPa. The obtained results show that the developed MLG papers are characterized by an electrical conductivity up to 1443.2 S/cm, porosity around 43%, high flexibility, shielding effectiveness up to 55 dB at 18 GHz with a thickness of 18 mu m. Numerical simulations are performed in order to understand the main factors contributing to the shielding performance of the new material.
ISSN:0008-6223
DOI:10.1016/j.carbon.2015.03.043