From Plastic to Silicone: The Novelties in Porous Polymer Fabrications

Porous polymers are gaining increased interest in several areas due, in great part, to their large surface area and unique physiochemical properties. Porous polymers are conventionally manufactured using specific processes related to the chemical structure of each polymer. With the wide variety of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2015-01, Vol.2015 (2015), p.1-21
Hauptverfasser: Khachfe, Hassan M., Hajj Hassan, Houssein, El Ahdab, Ranim, Berro, Soumaya, Hajj-Hassan, Mohamad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Porous polymers are gaining increased interest in several areas due, in great part, to their large surface area and unique physiochemical properties. Porous polymers are conventionally manufactured using specific processes related to the chemical structure of each polymer. With the wide variety of porous polymers that have been designed, fabricated, and tested to date, this review aims to provide an overview of the advances and recent progress in the preparation processes and fabrication techniques. A detailed comparison between these techniques is also provided. Some of these techniques offer the advantage of controlling the porosity and the possibility to obtain porous 3D polymers. A new generic fabrication process that can be applied to all liquid polymers to texture their outer surfaces with a desired porosity is also presented. The proposed process, which is based on two micromolding steps, offers flexibility in terms of tailoring the texture of the final polymer by simply using porous silicon templates with different pore sizes and configurations. The anticipated process was successfully implemented to texture polyethyl hydrosiloxane (PMHS) using porous silicon and polymethyl methacrylate (PMMA) scaffolds.
ISSN:1687-4110
1687-4129
DOI:10.1155/2015/142195