Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth
We propose and numerically analyze a plasmonic Bragg reflector formed in a graphene waveguide. The results show that the graphene plasmonic Bragg reflector can produce a broadband stopband that can be tuned over a wide wavelength range by a small change in the Fermi energy level of graphene. By intr...
Gespeichert in:
Veröffentlicht in: | Optics letters 2014-01, Vol.39 (2), p.271-274 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose and numerically analyze a plasmonic Bragg reflector formed in a graphene waveguide. The results show that the graphene plasmonic Bragg reflector can produce a broadband stopband that can be tuned over a wide wavelength range by a small change in the Fermi energy level of graphene. By introducing a defect into the Bragg reflector, we can achieve a Fabry-Perot-like microcavity with a quality factor of 50 for the defect resonance mode formed in the stopband. The proposed Bragg reflector could be used as a broadband ultrafast tunable integrated filter and a broadband modulator. In addition, the defect microcavity may find applications in graphene-based resonators. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.39.000271 |