An Adaptive Procedure for Task Scheduling Optimization in Mobile Cloud Computing

Nowadays, mobile cloud computing (MCC) has emerged as a new paradigm which enables offloading computation-intensive, resource-consuming tasks up to a powerful computing platform in cloud, leaving only simple jobs to the capacity-limited thin client devices such as smartphones, tablets, Apple’s iWatc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-13
Hauptverfasser: Phuoc Hung, Pham, Huh, Eui-Nam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, mobile cloud computing (MCC) has emerged as a new paradigm which enables offloading computation-intensive, resource-consuming tasks up to a powerful computing platform in cloud, leaving only simple jobs to the capacity-limited thin client devices such as smartphones, tablets, Apple’s iWatch, and Google Glass. However, it still faces many challenges due to inherent problems of thin clients, especially the slow processing and low network connectivity. So far, a number of research studies have been carried out, trying to eliminate these problems, yet few have been found efficient. In this paper, we present an enhanced architecture, taking advantage of collaboration of thin clients and conventional desktop or laptop computers, known as thick clients, particularly aiming at improving cloud access. Additionally, we introduce an innovative genetic approach for task scheduling such that the processing time is minimized, while considering network contention and cloud cost. Our simulation shows that the proposed approach is more cost-effective and achieves better performance compared with others.
ISSN:1024-123X
1563-5147
DOI:10.1155/2015/969027