Sorptive Removal of Nitro Explosives and Metals Using Biochar

The feasibility of using biochar as a sorbent to remove nitro explosives and metals from contaminated water was investigated through batch experiments. Biochar, synthesized using various biomasses, showed a porous structure and a high surface area and includes embedded carbonate minerals. Compared w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental quality 2014-09, Vol.43 (5), p.1663-1671
Hauptverfasser: Oh, Seok‐Young, Seo, Yong‐Deuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The feasibility of using biochar as a sorbent to remove nitro explosives and metals from contaminated water was investigated through batch experiments. Biochar, synthesized using various biomasses, showed a porous structure and a high surface area and includes embedded carbonate minerals. Compared with granular activated carbon, biochar was competitive as a sorbent for removing Cd, Cu, Pb, and Zn from water according to the maximum sorption capacities of the metals. Some biochars also effectively sorbed nitro explosives from water. Correlation analysis between maximum sorption capacities and properties of biochar showed that the sorption capacity of biochar for cationic toxic metals is related to cation exchange capacity and that the sorption capacity of explosives is proportional to surface area and carbon content. Results from X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses and laboratory experiments suggest that surface functional groups may be responsible for the sorption of cationic metals to the biochar surface. In contrast, carbon contents may account for the sorption of explosives, possibly through π–π electron donor–acceptor interactions. Our results suggest that biochar can be an attractive and alternative option in environmental remediation of nitro explosives and metals through sorption and immobilization and that appropriate selection of biochar may be necessary according to the types of contaminant and the properties of biochar.
ISSN:0047-2425
1537-2537
DOI:10.2134/jeq2014.02.0097