Quantum Hall effect in narrow graphene ribbons

The edge states in the integer quantum Hall effect are known to be significantly affected by electrostatic interactions leading to the formation of compressible and incompressible strips at the boundaries of Hall bars. We show here, in a combined experimental and theoretical analysis, that this does...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2012-11, Vol.86 (19), Article 195417
Hauptverfasser: Hettmansperger, H., Duerr, F., Oostinga, J. B., Gould, C., Trauzettel, B., Molenkamp, L. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The edge states in the integer quantum Hall effect are known to be significantly affected by electrostatic interactions leading to the formation of compressible and incompressible strips at the boundaries of Hall bars. We show here, in a combined experimental and theoretical analysis, that this does not hold for the quantum Hall effect in narrow graphene ribbons. In our graphene Hall bar, which is only 60 nm wide, we observe the quantum Hall effect up to Landau level index k = 2 and show within a zero-free-parameter model that the spatial extent of the compressible and incompressible strips is of a similar magnitude as the magnetic length. We conclude that in narrow graphene ribbons the single-particle picture is a more appropriate description of the quantum Hall effect and that electrostatic effects are of minor importance.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.86.195417