Analysis of the deformation energy of straight composite z-frames subjected to critical buckling loads
In this paper the correlation of deformation energy and critical buckling loads is examined. An advanced analysis technique is derived for the investigation of z-section frames typically applied in composite aircraft fuselage. This technique is verified through closed form solutions of z-section col...
Gespeichert in:
Veröffentlicht in: | Finite elements in analysis and design 2015-06, Vol.98, p.50-60 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper the correlation of deformation energy and critical buckling loads is examined. An advanced analysis technique is derived for the investigation of z-section frames typically applied in composite aircraft fuselage. This technique is verified through closed form solutions of z-section columns under quasi-static loading conditions. The method is applied to study the effects of flange width and laminate thickness on the critical failure modes of composite frames. Therein, the focus is on composite structural elements favourable for deformation kinematics in aerospace applications subjected to crash loads.
•An advanced analysis technique for the buckling of composite z-frames is presented.•A reliable model is established by analytical verification and a sensitivity study.•A framework for automated analyses and data processing is configured.•The method is applied to quantify deformation energy at the critical buckling load. |
---|---|
ISSN: | 0168-874X 1872-6925 |
DOI: | 10.1016/j.finel.2015.01.007 |