Intelligent Autofeedback and Safety Early-Warning for Underground Cavern Engineering during Construction Based on BP Neural Network and FEM

The low efficiency of feedback analysis is one of the main shortcomings in the construction of underground cavern engineering. With this in mind, a method of intelligent autofeedback and safety early-warning for underground cavern is proposed based on BP neural network and FEM. The training sample p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-8
Hauptverfasser: Lei, Xu, Ren, Qingwen, Zhang, Taijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 2015
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2015
creator Lei, Xu
Ren, Qingwen
Zhang, Taijun
description The low efficiency of feedback analysis is one of the main shortcomings in the construction of underground cavern engineering. With this in mind, a method of intelligent autofeedback and safety early-warning for underground cavern is proposed based on BP neural network and FEM. The training sample points are chosen by using uniform test design method, and the autogeneration of FEM calculation file for ABAQUS is realized by using the technique of file partition, information grouping, and orderly numbering. Then, intelligent autoinversion of mechanics parameters is realized, and the automatic connection of parameter inversion, subsequent prediction, and safety early-warning is achieved. The software of intelligent autofeedback and safety early-warning for underground cavern engineering during construction is developed. Finally, the applicability of the proposed method and the developed software is verified through an application example of underground cavern of a pumped-storage power station located in Southwest China.
doi_str_mv 10.1155/2015/873823
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701033692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701033692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-34976e629f328894a82a31080cb3904e02ff1efc4905ef1d23a327c70ae1c4933</originalsourceid><addsrcrecordid>eNqF0U1P3DAQBuAItRKU9sS9ssSlKgp4PE5iH-lqoUh8VGpRuUUmGW9Dg01tp2h_Q_90vYRD1Qund2Q9sq15i2IP-CFAVR0JDtWRalAJ3Cp2oKqxrEA2r_LMhSxB4M128SbGO84FVKB2ij9nLtE4DityiR1PyVui_tZ0P5lxPftqLKU1W5owrsvvJrjBrZj1gV27nsIq-CmjhflNwbGlWw2OKGxIPz3FwruYwtSlwTv2yUTq2Wb4wi5pCmbMkR59mJ86WV68LV5bM0Z695y7xfXJ8tvic3l-dXq2OD4vO1Q6lSh1U1MttEWhlJZGCYPAFe9uUXNJXFgLZDupeUUWeoEGRdM13BDkQ8Td4sN870PwvyaKqb0fYpe3YBz5KbbQcOCItRaZ7v9H7_wUXP5dC7WSErUQPKuDWXXBxxjItg9huDdh3QJvN8W0m2LauZisP876x-B68zi8gN_PmDIha_7BjdSyxr9Mv5aE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684439220</pqid></control><display><type>article</type><title>Intelligent Autofeedback and Safety Early-Warning for Underground Cavern Engineering during Construction Based on BP Neural Network and FEM</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lei, Xu ; Ren, Qingwen ; Zhang, Taijun</creator><contributor>Cen, Song</contributor><creatorcontrib>Lei, Xu ; Ren, Qingwen ; Zhang, Taijun ; Cen, Song</creatorcontrib><description>The low efficiency of feedback analysis is one of the main shortcomings in the construction of underground cavern engineering. With this in mind, a method of intelligent autofeedback and safety early-warning for underground cavern is proposed based on BP neural network and FEM. The training sample points are chosen by using uniform test design method, and the autogeneration of FEM calculation file for ABAQUS is realized by using the technique of file partition, information grouping, and orderly numbering. Then, intelligent autoinversion of mechanics parameters is realized, and the automatic connection of parameter inversion, subsequent prediction, and safety early-warning is achieved. The software of intelligent autofeedback and safety early-warning for underground cavern engineering during construction is developed. Finally, the applicability of the proposed method and the developed software is verified through an application example of underground cavern of a pumped-storage power station located in Southwest China.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2015/873823</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Artificial intelligence ; Automation ; Back propagation networks ; Caverns ; Civil engineering ; Computer programs ; Construction ; Construction engineering ; Data exchange ; Design techniques ; Efficiency ; Finite element method ; Hydroelectric power ; Mathematical analysis ; Mathematical models ; Mathematical problems ; Neural networks ; Parameters ; Power plants ; Pumped storage ; Safety ; Software ; Software engineering ; Underground caverns ; Underground construction ; Underground storage ; Warning</subject><ispartof>Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-8</ispartof><rights>Copyright © 2015 Lei Xu et al.</rights><rights>Copyright © 2015 Lei Xu et al. Lei Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-34976e629f328894a82a31080cb3904e02ff1efc4905ef1d23a327c70ae1c4933</citedby><cites>FETCH-LOGICAL-c389t-34976e629f328894a82a31080cb3904e02ff1efc4905ef1d23a327c70ae1c4933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Cen, Song</contributor><creatorcontrib>Lei, Xu</creatorcontrib><creatorcontrib>Ren, Qingwen</creatorcontrib><creatorcontrib>Zhang, Taijun</creatorcontrib><title>Intelligent Autofeedback and Safety Early-Warning for Underground Cavern Engineering during Construction Based on BP Neural Network and FEM</title><title>Mathematical problems in engineering</title><description>The low efficiency of feedback analysis is one of the main shortcomings in the construction of underground cavern engineering. With this in mind, a method of intelligent autofeedback and safety early-warning for underground cavern is proposed based on BP neural network and FEM. The training sample points are chosen by using uniform test design method, and the autogeneration of FEM calculation file for ABAQUS is realized by using the technique of file partition, information grouping, and orderly numbering. Then, intelligent autoinversion of mechanics parameters is realized, and the automatic connection of parameter inversion, subsequent prediction, and safety early-warning is achieved. The software of intelligent autofeedback and safety early-warning for underground cavern engineering during construction is developed. Finally, the applicability of the proposed method and the developed software is verified through an application example of underground cavern of a pumped-storage power station located in Southwest China.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Back propagation networks</subject><subject>Caverns</subject><subject>Civil engineering</subject><subject>Computer programs</subject><subject>Construction</subject><subject>Construction engineering</subject><subject>Data exchange</subject><subject>Design techniques</subject><subject>Efficiency</subject><subject>Finite element method</subject><subject>Hydroelectric power</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Power plants</subject><subject>Pumped storage</subject><subject>Safety</subject><subject>Software</subject><subject>Software engineering</subject><subject>Underground caverns</subject><subject>Underground construction</subject><subject>Underground storage</subject><subject>Warning</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U1P3DAQBuAItRKU9sS9ssSlKgp4PE5iH-lqoUh8VGpRuUUmGW9Dg01tp2h_Q_90vYRD1Qund2Q9sq15i2IP-CFAVR0JDtWRalAJ3Cp2oKqxrEA2r_LMhSxB4M128SbGO84FVKB2ij9nLtE4DityiR1PyVui_tZ0P5lxPftqLKU1W5owrsvvJrjBrZj1gV27nsIq-CmjhflNwbGlWw2OKGxIPz3FwruYwtSlwTv2yUTq2Wb4wi5pCmbMkR59mJ86WV68LV5bM0Z695y7xfXJ8tvic3l-dXq2OD4vO1Q6lSh1U1MttEWhlJZGCYPAFe9uUXNJXFgLZDupeUUWeoEGRdM13BDkQ8Td4sN870PwvyaKqb0fYpe3YBz5KbbQcOCItRaZ7v9H7_wUXP5dC7WSErUQPKuDWXXBxxjItg9huDdh3QJvN8W0m2LauZisP876x-B68zi8gN_PmDIha_7BjdSyxr9Mv5aE</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Lei, Xu</creator><creator>Ren, Qingwen</creator><creator>Zhang, Taijun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150101</creationdate><title>Intelligent Autofeedback and Safety Early-Warning for Underground Cavern Engineering during Construction Based on BP Neural Network and FEM</title><author>Lei, Xu ; Ren, Qingwen ; Zhang, Taijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-34976e629f328894a82a31080cb3904e02ff1efc4905ef1d23a327c70ae1c4933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Back propagation networks</topic><topic>Caverns</topic><topic>Civil engineering</topic><topic>Computer programs</topic><topic>Construction</topic><topic>Construction engineering</topic><topic>Data exchange</topic><topic>Design techniques</topic><topic>Efficiency</topic><topic>Finite element method</topic><topic>Hydroelectric power</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Power plants</topic><topic>Pumped storage</topic><topic>Safety</topic><topic>Software</topic><topic>Software engineering</topic><topic>Underground caverns</topic><topic>Underground construction</topic><topic>Underground storage</topic><topic>Warning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Xu</creatorcontrib><creatorcontrib>Ren, Qingwen</creatorcontrib><creatorcontrib>Zhang, Taijun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Xu</au><au>Ren, Qingwen</au><au>Zhang, Taijun</au><au>Cen, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Autofeedback and Safety Early-Warning for Underground Cavern Engineering during Construction Based on BP Neural Network and FEM</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The low efficiency of feedback analysis is one of the main shortcomings in the construction of underground cavern engineering. With this in mind, a method of intelligent autofeedback and safety early-warning for underground cavern is proposed based on BP neural network and FEM. The training sample points are chosen by using uniform test design method, and the autogeneration of FEM calculation file for ABAQUS is realized by using the technique of file partition, information grouping, and orderly numbering. Then, intelligent autoinversion of mechanics parameters is realized, and the automatic connection of parameter inversion, subsequent prediction, and safety early-warning is achieved. The software of intelligent autofeedback and safety early-warning for underground cavern engineering during construction is developed. Finally, the applicability of the proposed method and the developed software is verified through an application example of underground cavern of a pumped-storage power station located in Southwest China.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/873823</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-8
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1701033692
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Artificial intelligence
Automation
Back propagation networks
Caverns
Civil engineering
Computer programs
Construction
Construction engineering
Data exchange
Design techniques
Efficiency
Finite element method
Hydroelectric power
Mathematical analysis
Mathematical models
Mathematical problems
Neural networks
Parameters
Power plants
Pumped storage
Safety
Software
Software engineering
Underground caverns
Underground construction
Underground storage
Warning
title Intelligent Autofeedback and Safety Early-Warning for Underground Cavern Engineering during Construction Based on BP Neural Network and FEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Autofeedback%20and%20Safety%20Early-Warning%20for%20Underground%20Cavern%20Engineering%20during%20Construction%20Based%20on%20BP%20Neural%20Network%20and%20FEM&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Lei,%20Xu&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2015/873823&rft_dat=%3Cproquest_cross%3E1701033692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1684439220&rft_id=info:pmid/&rfr_iscdi=true