Third-dimension information retrieval from a single convergent-beam transmission electron diffraction pattern using an artificial neural network
We have reconstructed third-dimension specimen information from convergent-beam electron diffraction (CBED) patterns simulated using the stacked-Bloch-wave method. By reformulating the stacked-Bloch-wave formalism as an artificial neural network and optimizing with resilient back propagation, we dem...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-05, Vol.89 (20), Article 205409 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have reconstructed third-dimension specimen information from convergent-beam electron diffraction (CBED) patterns simulated using the stacked-Bloch-wave method. By reformulating the stacked-Bloch-wave formalism as an artificial neural network and optimizing with resilient back propagation, we demonstrate specimen orientation reconstructions with depth resolutions down to 5 nm. To show our algorithm's ability to analyze realistic data, we also discuss and demonstrate our algorithm reconstructing from noisy data and using a limited number of CBED disks. Applicability of this reconstruction algorithm to other specimen parameters is discussed. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.89.205409 |