Applying the Retro-Enantio Approach To Obtain a Peptide Capable of Overcoming the Blood-Brain Barrier
The blood–brain barrier (BBB) is a formidable physical and enzymatic barrier that tightly controls the passage of molecules from the blood to the brain. In fact, less than 2 % of all potential neurotherapeutics are able to cross it. Here, by applying the retro‐enantio approach to a peptide that targ...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2015-03, Vol.54 (13), p.3967-3972 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The blood–brain barrier (BBB) is a formidable physical and enzymatic barrier that tightly controls the passage of molecules from the blood to the brain. In fact, less than 2 % of all potential neurotherapeutics are able to cross it. Here, by applying the retro‐enantio approach to a peptide that targets the transferrin receptor, a full protease‐resistant peptide with the capacity to act as a BBB shuttle was obtained and thus enabled the transport of a variety of cargos into the central nervous system.
Jumping hurdles: The retro‐enantio approach has been applied to a peptide that targets the transferrin receptor. The stability and permeability of the peptide across the blood–brain barrier (BBB) were notably increased. This new protease‐resistant peptide was tested as a BBB shuttle, and it does facilitate the transport of cargo across the BBB, both in vitro and in vivo, as demonstrated by intravital microscopy in living mice. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201411408 |