Enantioselective Catalysis of Photochemical Reactions

The nature of the excited state renders the development of chiral catalysts for enantioselective photochemical reactions a considerable challenge. The absorption of a 400 nm photon corresponds to an energy uptake of approximately 300 kJ mol−1. Given the large distance to the ground state, innovative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2015-03, Vol.54 (13), p.3872-3890
Hauptverfasser: Brimioulle, Richard, Lenhart, Dominik, Maturi, Mark M., Bach, Thorsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nature of the excited state renders the development of chiral catalysts for enantioselective photochemical reactions a considerable challenge. The absorption of a 400 nm photon corresponds to an energy uptake of approximately 300 kJ mol−1. Given the large distance to the ground state, innovative concepts are required to open reaction pathways that selectively lead to a single enantiomer of the desired product. This Review outlines the two major concepts of homogenously catalyzed enantioselective processes. The first part deals with chiral photocatalysts, which intervene in the photochemical key step and induce an asymmetric induction in this step. In the second part, reactions are presented in which the photochemical excitation is mediated by an achiral photocatalyst and the transfer of chirality is ensured by a second chiral catalyst (dual catalysis). All good things come in threes: With catalysis, light, and chirality, three of the most important scientific phenomena merge in the field of the enantioselective catalysis of photochemical reactions. This Review introduces the main concepts and provides an overview of the key findings in this area.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201411409