Lossy Gossip and Composition of Metrics
We study the monoid generated by n × n distance matrices under tropical (or min-plus) multiplication. Using the tropical geometry of the orthogonal group, we prove that this monoid is a finite polyhedral fan of dimension n 2 , and we compute the structure of this fan for n up to 5 . The monoid captu...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2015-06, Vol.53 (4), p.890-913 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the monoid generated by
n
×
n
distance matrices under tropical (or min-plus) multiplication. Using the tropical geometry of the orthogonal group, we prove that this monoid is a finite polyhedral fan of dimension
n
2
, and we compute the structure of this fan for
n
up to
5
. The monoid captures gossip among
n
gossipers over lossy phone lines, and contains the gossip monoid over ordinary phone lines as a submonoid. We prove several new results about this submonoid as well. In particular, we establish a sharp bound on chains of calls in each of which someone learns something new. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-015-9666-1 |