Lossy Gossip and Composition of Metrics

We study the monoid generated by n × n distance matrices under tropical (or min-plus) multiplication. Using the tropical geometry of the orthogonal group, we prove that this monoid is a finite polyhedral fan of dimension n 2 , and we compute the structure of this fan for n up to 5 . The monoid captu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2015-06, Vol.53 (4), p.890-913
Hauptverfasser: Brouwer, Andries E., Draisma, Jan, Frenk, Bart J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the monoid generated by n × n distance matrices under tropical (or min-plus) multiplication. Using the tropical geometry of the orthogonal group, we prove that this monoid is a finite polyhedral fan of dimension n 2 , and we compute the structure of this fan for n up to 5 . The monoid captures gossip among n gossipers over lossy phone lines, and contains the gossip monoid over ordinary phone lines as a submonoid. We prove several new results about this submonoid as well. In particular, we establish a sharp bound on chains of calls in each of which someone learns something new.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-015-9666-1