Thermal excitation in a spatially modulated monolayer solid: Incommensurate xenon/graphite
Calculations of the properties of monolayer xenon/graphite for temperatures up to its triple point at 100 K are reported. The average lattice constant and orientational epitaxy angle for the monolayer solid are evaluated along its (two-dimensional) sublimation curve. The incommensurate rotated latti...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-03, Vol.89 (12), Article 125431 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Calculations of the properties of monolayer xenon/graphite for temperatures up to its triple point at 100 K are reported. The average lattice constant and orientational epitaxy angle for the monolayer solid are evaluated along its (two-dimensional) sublimation curve. The incommensurate rotated lattice approaches the incommensurate aligned configuration as the melting temperature is approached, as in experiments. The calculated temperature, latent heat of melting, and solid-liquid density difference at the triple point agree with experiment. The methods include molecular dynamics simulations for large submonolayer patches of xenon and both self-consistent-phonon and perturbation-variation approximations. An overall quantitative agreement between the simulations, calculations, and experimental data is achieved with an interaction model that includes the spatially periodic xenon-graphite corrugation energy. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.89.125431 |