Silicon-induced faceting at the Ag(110) surface
The Si/Ag(110) interface is attracting increasing interest since the recent claim that the one-dimensional (1D) nanostructures formed at this surface would be silicene nanoribbons. Lately, the synthesis of multilayer silicene nanoribbons was reported as well. In this paper, we report on the scanning...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-03, Vol.89 (11), Article 115437 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Si/Ag(110) interface is attracting increasing interest since the recent claim that the one-dimensional (1D) nanostructures formed at this surface would be silicene nanoribbons. Lately, the synthesis of multilayer silicene nanoribbons was reported as well. In this paper, we report on the scanning tunneling microscopy, low-energy electron diffraction, and density functional theory study of the 1D nanostructures forming on Ag(110) upon Si deposition at temperatures above 460 K. Two different kinds of nanostructures are here described: nanodikes and nanotrenches, respectively protruding from and engraved on the Ag(110) substrate. The first kind of structure was recently reported to be constituted by multistacks of silicene nanoribbons. We show here that nanodikes and nanotrenches are the result of silver faceting stabilized by silicon atoms. Indeed, such nanostructures share the very same facet crystallographic features, namely inclination and reconstruction: the top and base parts are Ag(110) planes, while their sides are Ag(221) and Ag(221) facets stabilized by Si atoms. Finally, density functional theory calculations suggest that Si atoms may substitute Ag atoms in such facets, casting doubts on the usual assumption that Ag is a suitable substrate for silicene growth because it is inert against silicon. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.89.115437 |