Evolution of a neutron-initiated micro big bang in superfluid super(3)He - B
A nuclear capture reaction of a single neutron by ultracold superfluid super(3)He results in a rapid overheating followed by the expansion and subsequent cooling of the hot subregion, in a certain analogy with the big bang of the early universe. It was shown in a Grenoble experiment that a significa...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-07, Vol.90 (2) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A nuclear capture reaction of a single neutron by ultracold superfluid super(3)He results in a rapid overheating followed by the expansion and subsequent cooling of the hot subregion, in a certain analogy with the big bang of the early universe. It was shown in a Grenoble experiment that a significant part of the energy released during the nuclear reaction was not converted into heat even after several seconds. It was thought that the missing energy was stored in a tangle of quantized vortex lines. This explanation, however, contradicts the expected lifetime of a bulk vortex tangle, 10 super(-5)-10 super(-4) s, which is much shorter than the observed time delay of seconds. In this paper we propose a scenario that resolves the contradiction: the vortex tangle, created by the hot spot, emits isolated vortex loops that take with them a significant part of the tangle's energy. These loops quickly reach the container walls. The dilute ensemble of vortex loops attached to the walls can survive for a long time, while the remaining bulk vortex tangle decays quickly. |
---|---|
ISSN: | 1098-0121 1550-235X |