On the Adjoint of Operator Matrices with Unbounded Entries II

In this paper, the adjoint of a densely defined block operator matrix L=[A B C D] in a Hilbert space X ×X is studied and the sufficient conditions under which the equality L*=[A* B* C* D*] holds are obtained through applying Frobenius-Schur factorization.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2015-06, Vol.31 (6), p.995-1002
Hauptverfasser: Wu, De Yu, Chen, Alatancang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the adjoint of a densely defined block operator matrix L=[A B C D] in a Hilbert space X ×X is studied and the sufficient conditions under which the equality L*=[A* B* C* D*] holds are obtained through applying Frobenius-Schur factorization.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-015-4275-8