On the Adjoint of Operator Matrices with Unbounded Entries II
In this paper, the adjoint of a densely defined block operator matrix L=[A B C D] in a Hilbert space X ×X is studied and the sufficient conditions under which the equality L*=[A* B* C* D*] holds are obtained through applying Frobenius-Schur factorization.
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2015-06, Vol.31 (6), p.995-1002 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the adjoint of a densely defined block operator matrix L=[A B C D] in a Hilbert space X ×X is studied and the sufficient conditions under which the equality L*=[A* B* C* D*] holds are obtained through applying Frobenius-Schur factorization. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-015-4275-8 |