Decoupling of defect and short-range order contributions to resistivity recovery measurements in binary alloys

We report a new and improved approach that uses low-temperature resistivity recovery measurements to study the defect kinetics in metallic binary alloys. This method is able to decouple the effect related to the irradiation defect contribution to the resistivity from that of the short-range order, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-12, Vol.90 (22), Article 220102
Hauptverfasser: Gómez-Ferrer, B., García-Cortés, I., Marco, J. F., Jiménez-Rey, D., Vila, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a new and improved approach that uses low-temperature resistivity recovery measurements to study the defect kinetics in metallic binary alloys. This method is able to decouple the effect related to the irradiation defect contribution to the resistivity from that of the short-range order, which is enhanced by the free migration of defects. This approach can provide reliable experimental data which are more suitable for comparisons with current computational models. Furthermore, the difference in this method with respect to the classical one is that our method gives information concerning the role of vacancies and interstitials on short-range order. The method is applied to a model alloy Fe-5%Cr, of interest for fusion applications, where short-range order effects have been previously found to play a role.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.90.220102