Dielectric response of laser-excited silicon at finite electron temperature
We calculate the dielectric response of excited crystalline silicon in electron thermal equilibrium by adiabatic time-dependent density functional theory (TDDFT) to model the response to irradiation by high-intensity laser pulses. The real part of the dielectric function is characterized by the stro...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-11, Vol.90 (17), Article 174303 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We calculate the dielectric response of excited crystalline silicon in electron thermal equilibrium by adiabatic time-dependent density functional theory (TDDFT) to model the response to irradiation by high-intensity laser pulses. The real part of the dielectric function is characterized by the strong negative behavior at low frequencies due to excited electron-hole pairs. The response agrees rather well with the numerical pump-probe calculations which simulate electronic excitations in nonequilibrium phase immediately after the laser pulse irradiation. The thermal response is also compared with the Drude model which includes electron effective mass and collision time as fitting parameters. We find that the extracted effective masses are in the range of 0.22-0.36 and lifetimes are in the range of 1-14 fs depending on the temperature. The short Drude lifetimes show that strong damping is possible in the adiabatic TDDFT, despite the absence of explicit electron-electron collisions. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.90.174303 |