Shale Gas Potential of the Major Marine Shale Formations in the Upper Yangtze Platform, South China, Part III: Mineralogical, Lithofacial, Petrophysical, and Rock Mechanical Properties

The marine black shale formations on the Upper Yangtze Platform, South China, are currently exploration targets for shale gas. Here, we report on the mineralogy, lithofacies, petrophysics, and rock mechanics of samples collected from the Ediacaran (Upper Sinian), Lower Cambrian, and Lower Silurian b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2014-04, Vol.28 (4), p.2322-2342
Hauptverfasser: Tan, Jingqiang, Horsfield, Brian, Fink, Reinhard, Krooss, Bernhard, Schulz, Hans-Martin, Rybacki, Erik, Zhang, Jinchuan, Boreham, Christopher J, van Graas, Ger, Tocher, Bruce A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The marine black shale formations on the Upper Yangtze Platform, South China, are currently exploration targets for shale gas. Here, we report on the mineralogy, lithofacies, petrophysics, and rock mechanics of samples collected from the Ediacaran (Upper Sinian), Lower Cambrian, and Lower Silurian black shale intervals. All three formations are composed of high proportion of quartz, low content of clay, and rare or nonexistent content of carbonates. The Ediacaran and Lower Cambrian shales deposited in restricted deep water marine platform to marine basin environments are characterized by a higher quartz content and lower clay content than the Lower Silurian shales that were deposited in a more restricted marine basin environment. The carbonate content varies from 0 to over 50%, with the higher values measured in the Lower Silurian samples. These stratigraphic units were formed during bottom water anoxic conditions; therefore, they were rarely influenced by bioturbation. Lithologically, laminated and nonlaminated siliceous mudstones predominate, with minor contributions of other lithotypes. Pores generally have diameters in the nanometer (nm) to micrometer (μm) range, and numerous pores occur in organic matter. Most of the measured samples have porosities less than 4%, although a few samples show porosity in excess of 10%. Pores with radii less than 50 nm contribute significantly to total pore volume and total porosity. Permeability is extremely low, and helium permeability coefficients (Klinkenberg corrected permeability coefficient) are less than 20.2 nD (nano-Darcy, ∼2 × 10–20 m2). The rock mechanical properties of the samples are characterized by high brittle behavior, which coincides with their high compressive and tensile strengths and elastic properties. The Lower Cambrian shale is generally more brittle than the Lower Silurian shales, which possess a relatively higher content of clay minerals. The rock mechanical properties of the measured samples, however, depend on the overall mineral compositions and physical properties.
ISSN:0887-0624
1520-5029
DOI:10.1021/ef4022703