Effects on a 50 MW sub(th) Circulating Fluidized-Bed Boiler Co-firing Animal Waste, Sludge, Residue Wood, Peat, and Forest Fuels

This work is a part of an effort to maximize the operational safety of a 50 MW sub(th) circulating fluidized-bed (CFB) boiler located in Perstorp, Sweden, co-firing animal waste, peat, waste wood, forest residues, and industrial sludge. An increase in the CFB boiler availability reduces the use of e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2013-10, Vol.27 (10), p.6146-6158-6146-6158
Hauptverfasser: Hagman, H, Backman, R, Bostrom, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is a part of an effort to maximize the operational safety of a 50 MW sub(th) circulating fluidized-bed (CFB) boiler located in Perstorp, Sweden, co-firing animal waste, peat, waste wood, forest residues, and industrial sludge. An increase in the CFB boiler availability reduces the use of expensive fossil fuel (oil) in backup boilers during operational problems of the CFB boiler. The work includes a thorough mapping and analysis of the failure and preventive maintenance statistics, together with elemental analysis of boiler ash and deposits, flue gas, and fuel fractions. Correlations between boiler parameters and boiler availability are sought, and recommendations regarding boiler design and operation are made. An explicit description of the boiler is made to allow for the use of presented material as future reference material. It was observed that the failure frequency is especially high where (1) rapid chloride-rich windward deposit buildup is combined with (2) high construction material temperature and (3) windward soot blowing. In areas where one of these factors was absent, a more moderate material loss could be seen. The flue gas average elemental composition can be regarded as close to constant as it flows through the series of heat exchangers. Thus, the significant differences in deposit buildup of different flue gas cross-sections cannot be a result of changed average flue gas composition. The areas of the steam tubes suffering from rapid material loss are also exposed to high deposit rates. Downstream of a well-defined temperature threshold in the secondary superheater, neither material loss nor substantial deposit buildup could be seen. Tube deposits are dominated by Na, S, Ca, K, and P, but only Na, K, and S are enriched in the windward tube deposits relative to the fly ash bulk composition. The temperature of the flue gas is the major parameter governing the rate of deposit buildup in the boiler heat exchangers. Of the fuel nitrogen, 95 wt % leaves the process as N sub(2)(g). Fuel mix ash content analysis via a separate ashing of different fuel fractions by heating to 550 degree C does not reflect the ash content of the fuel mix correctly. The soot blowing angle of attack on the deposits should be regarded in areas with rapid deposit growth when boilers and soot blowers are designed to allow for efficient tube cleaning. The use of heterogeneous fuel in the boiler creates strong variations in fuel, flue gas, and particle composition an
ISSN:0887-0624
1520-5029
DOI:10.1021/ef4004522