A simplified method to downscale wave dynamics on vertical breakwaters
A coastal structure is usually designed with the final objective to guarantee its functionality and stability throughout its life cycle. Regarding stability, the three main failure modes are sliding, overturning and failure of the foundations. To accomplish the design objectives, a design sea state...
Gespeichert in:
Veröffentlicht in: | Coastal engineering (Amsterdam) 2013-01, Vol.71, p.68-77 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A coastal structure is usually designed with the final objective to guarantee its functionality and stability throughout its life cycle. Regarding stability, the three main failure modes are sliding, overturning and failure of the foundations. To accomplish the design objectives, a design sea state is usually used when calculating the loads and scour around the structure. This design sea state corresponds to a certain sea state with specific return period values of a significant wave height. However, the combination of different simultaneous sea state parameters can produce other critical situations compromising the stability of the structure which then require the calculation of long time series of wave forces corresponding to long-term historical wave situations. Moreover, a design force associated to a certain return period can be defined from the time series of the stability parameters. The most accurate techniques which can be used to estimate structure stability are based on numerical and physical models, but these are very time consuming and the calculation of long time series is therefore unfeasible. Here, we propose a hybrid methodology to transform wave conditions into wave forces acting upon vertical structures and scour around it. The methodology consists of a selection of a subset of sea states representative of wave climate at the structure location, using a maximum dissimilarity algorithm, The wave forces acting upon the structure and scour around it, for the wave situations selected, are then estimated as is the reconstruction of the calculated parameters corresponding to historical sea states using an interpolation technique based on radial basis function. The validation of the results, through a direct comparison between reconstructed series and analytically (semi-empirical formulations) calculated ones, confirms the ability of the developed methodology to reconstruct time series of stability parameters on vertical breakwaters. This methodology allows its application to numerical and physical models.
► The hybrid methodology allows obtaining time series of wave loads on a vertical breakwater. ► Selection algorithms and interpolation techniques are mixed (Camus 2011, Coast. Eng.). ► MDA algorithm selects automatically a subset of multidimensional sea states. ► RBF interpolation is a convenient method for scattered and multivariate data. |
---|---|
ISSN: | 0378-3839 1872-7379 |
DOI: | 10.1016/j.coastaleng.2012.08.001 |