Hybrid morphological methodology for software development cost estimation
In this paper we propose a hybrid methodology to design morphological-rank-linear (MRL) perceptrons in the problem of software development cost estimation (SDCE). In this methodology, we use a modified genetic algorithm (MGA) to optimize the parameters of the MRL perceptron, as well as to select an...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2012-05, Vol.39 (6), p.6129-6139 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6139 |
---|---|
container_issue | 6 |
container_start_page | 6129 |
container_title | Expert systems with applications |
container_volume | 39 |
creator | Araújo, Ricardo de A. Soares, Sergio Oliveira, Adriano L.I. |
description | In this paper we propose a hybrid methodology to design morphological-rank-linear (MRL) perceptrons in the problem of software development cost estimation (SDCE). In this methodology, we use a modified genetic algorithm (MGA) to optimize the parameters of the MRL perceptron, as well as to select an optimal input feature subset of the used databases, aiming at a higher accuracy level for SDCE problems. Besides, for each individual of MGA, a gradient steepest descent method is used to further improve the MRL perceptron parameters supplied by MGA. Finally, we conduct an experimental analysis with the proposed methodology using six well-known benchmark databases of software projects, where two relevant performance metrics and a fitness function are used to assess the performance of the proposed methodology, which is compared to classical machine learning models presented in the literature. |
doi_str_mv | 10.1016/j.eswa.2011.11.077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1700980261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095741741101623X</els_id><sourcerecordid>1700980261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-36d54ee9545f6a2b3225080c0b1ef8a181899abf4f88e0ec2cb8d45e0187d4503</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfwNMevew62T_ZBLxIUVsoeNFzyGYnNmW3WZNtS7-9WepZYeAx8HszvEfIPYWMAmWP2wzDUWU5UJrFgbq-IDPK6yJltSguyQxEVaclrctrchPCFoDWAPWMrJanxts26Z0fNq5zX1arLulx3Lh2Wk-JcT4JzoxH5TFp8YCdG3rcjYl2YUwwjLZXo3W7W3JlVBfw7lfn5PP15WOxTNfvb6vF8zrVBWNjWrC2KhFFVVaGqbwp8rwCDhoaioYryikXQjWmNJwjoM51w9uyQohpokIxJw_nu4N33_v4X_Y2aOw6tUO3D3IKJjjkjP6PAhWsKHIuIpqfUe1dCB6NHHwM5k8Rmjgmt3KqWE4Vyzix4mh6Opsw5j1Y9DJoizuNrfWoR9k6-5f9B1nzhXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019633289</pqid></control><display><type>article</type><title>Hybrid morphological methodology for software development cost estimation</title><source>Elsevier ScienceDirect Journals</source><creator>Araújo, Ricardo de A. ; Soares, Sergio ; Oliveira, Adriano L.I.</creator><creatorcontrib>Araújo, Ricardo de A. ; Soares, Sergio ; Oliveira, Adriano L.I.</creatorcontrib><description>In this paper we propose a hybrid methodology to design morphological-rank-linear (MRL) perceptrons in the problem of software development cost estimation (SDCE). In this methodology, we use a modified genetic algorithm (MGA) to optimize the parameters of the MRL perceptron, as well as to select an optimal input feature subset of the used databases, aiming at a higher accuracy level for SDCE problems. Besides, for each individual of MGA, a gradient steepest descent method is used to further improve the MRL perceptron parameters supplied by MGA. Finally, we conduct an experimental analysis with the proposed methodology using six well-known benchmark databases of software projects, where two relevant performance metrics and a fitness function are used to assess the performance of the proposed methodology, which is compared to classical machine learning models presented in the literature.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2011.11.077</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer programs ; Expert systems ; Feature selection ; Genetic algorithms ; Hybrid methodologies ; Mathematical models ; Methodology ; Morphological-rank-linear perceptrons ; Optimization ; Software development ; Software development cost estimation ; Steepest descent method</subject><ispartof>Expert systems with applications, 2012-05, Vol.39 (6), p.6129-6139</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-36d54ee9545f6a2b3225080c0b1ef8a181899abf4f88e0ec2cb8d45e0187d4503</citedby><cites>FETCH-LOGICAL-c366t-36d54ee9545f6a2b3225080c0b1ef8a181899abf4f88e0ec2cb8d45e0187d4503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S095741741101623X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Araújo, Ricardo de A.</creatorcontrib><creatorcontrib>Soares, Sergio</creatorcontrib><creatorcontrib>Oliveira, Adriano L.I.</creatorcontrib><title>Hybrid morphological methodology for software development cost estimation</title><title>Expert systems with applications</title><description>In this paper we propose a hybrid methodology to design morphological-rank-linear (MRL) perceptrons in the problem of software development cost estimation (SDCE). In this methodology, we use a modified genetic algorithm (MGA) to optimize the parameters of the MRL perceptron, as well as to select an optimal input feature subset of the used databases, aiming at a higher accuracy level for SDCE problems. Besides, for each individual of MGA, a gradient steepest descent method is used to further improve the MRL perceptron parameters supplied by MGA. Finally, we conduct an experimental analysis with the proposed methodology using six well-known benchmark databases of software projects, where two relevant performance metrics and a fitness function are used to assess the performance of the proposed methodology, which is compared to classical machine learning models presented in the literature.</description><subject>Computer programs</subject><subject>Expert systems</subject><subject>Feature selection</subject><subject>Genetic algorithms</subject><subject>Hybrid methodologies</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Morphological-rank-linear perceptrons</subject><subject>Optimization</subject><subject>Software development</subject><subject>Software development cost estimation</subject><subject>Steepest descent method</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKtfwNMevew62T_ZBLxIUVsoeNFzyGYnNmW3WZNtS7-9WepZYeAx8HszvEfIPYWMAmWP2wzDUWU5UJrFgbq-IDPK6yJltSguyQxEVaclrctrchPCFoDWAPWMrJanxts26Z0fNq5zX1arLulx3Lh2Wk-JcT4JzoxH5TFp8YCdG3rcjYl2YUwwjLZXo3W7W3JlVBfw7lfn5PP15WOxTNfvb6vF8zrVBWNjWrC2KhFFVVaGqbwp8rwCDhoaioYryikXQjWmNJwjoM51w9uyQohpokIxJw_nu4N33_v4X_Y2aOw6tUO3D3IKJjjkjP6PAhWsKHIuIpqfUe1dCB6NHHwM5k8Rmjgmt3KqWE4Vyzix4mh6Opsw5j1Y9DJoizuNrfWoR9k6-5f9B1nzhXs</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Araújo, Ricardo de A.</creator><creator>Soares, Sergio</creator><creator>Oliveira, Adriano L.I.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201205</creationdate><title>Hybrid morphological methodology for software development cost estimation</title><author>Araújo, Ricardo de A. ; Soares, Sergio ; Oliveira, Adriano L.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-36d54ee9545f6a2b3225080c0b1ef8a181899abf4f88e0ec2cb8d45e0187d4503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer programs</topic><topic>Expert systems</topic><topic>Feature selection</topic><topic>Genetic algorithms</topic><topic>Hybrid methodologies</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Morphological-rank-linear perceptrons</topic><topic>Optimization</topic><topic>Software development</topic><topic>Software development cost estimation</topic><topic>Steepest descent method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araújo, Ricardo de A.</creatorcontrib><creatorcontrib>Soares, Sergio</creatorcontrib><creatorcontrib>Oliveira, Adriano L.I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araújo, Ricardo de A.</au><au>Soares, Sergio</au><au>Oliveira, Adriano L.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid morphological methodology for software development cost estimation</atitle><jtitle>Expert systems with applications</jtitle><date>2012-05</date><risdate>2012</risdate><volume>39</volume><issue>6</issue><spage>6129</spage><epage>6139</epage><pages>6129-6139</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>In this paper we propose a hybrid methodology to design morphological-rank-linear (MRL) perceptrons in the problem of software development cost estimation (SDCE). In this methodology, we use a modified genetic algorithm (MGA) to optimize the parameters of the MRL perceptron, as well as to select an optimal input feature subset of the used databases, aiming at a higher accuracy level for SDCE problems. Besides, for each individual of MGA, a gradient steepest descent method is used to further improve the MRL perceptron parameters supplied by MGA. Finally, we conduct an experimental analysis with the proposed methodology using six well-known benchmark databases of software projects, where two relevant performance metrics and a fitness function are used to assess the performance of the proposed methodology, which is compared to classical machine learning models presented in the literature.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2011.11.077</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2012-05, Vol.39 (6), p.6129-6139 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_1700980261 |
source | Elsevier ScienceDirect Journals |
subjects | Computer programs Expert systems Feature selection Genetic algorithms Hybrid methodologies Mathematical models Methodology Morphological-rank-linear perceptrons Optimization Software development Software development cost estimation Steepest descent method |
title | Hybrid morphological methodology for software development cost estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20morphological%20methodology%20for%20software%20development%20cost%20estimation&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Ara%C3%BAjo,%20Ricardo%20de%20A.&rft.date=2012-05&rft.volume=39&rft.issue=6&rft.spage=6129&rft.epage=6139&rft.pages=6129-6139&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2011.11.077&rft_dat=%3Cproquest_cross%3E1700980261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019633289&rft_id=info:pmid/&rft_els_id=S095741741101623X&rfr_iscdi=true |