Hybrid morphological methodology for software development cost estimation
In this paper we propose a hybrid methodology to design morphological-rank-linear (MRL) perceptrons in the problem of software development cost estimation (SDCE). In this methodology, we use a modified genetic algorithm (MGA) to optimize the parameters of the MRL perceptron, as well as to select an...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2012-05, Vol.39 (6), p.6129-6139 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we propose a hybrid methodology to design morphological-rank-linear (MRL) perceptrons in the problem of software development cost estimation (SDCE). In this methodology, we use a modified genetic algorithm (MGA) to optimize the parameters of the MRL perceptron, as well as to select an optimal input feature subset of the used databases, aiming at a higher accuracy level for SDCE problems. Besides, for each individual of MGA, a gradient steepest descent method is used to further improve the MRL perceptron parameters supplied by MGA. Finally, we conduct an experimental analysis with the proposed methodology using six well-known benchmark databases of software projects, where two relevant performance metrics and a fitness function are used to assess the performance of the proposed methodology, which is compared to classical machine learning models presented in the literature. |
---|---|
ISSN: | 0957-4174 1873-6793 |
DOI: | 10.1016/j.eswa.2011.11.077 |