Hybrid morphological methodology for software development cost estimation

In this paper we propose a hybrid methodology to design morphological-rank-linear (MRL) perceptrons in the problem of software development cost estimation (SDCE). In this methodology, we use a modified genetic algorithm (MGA) to optimize the parameters of the MRL perceptron, as well as to select an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2012-05, Vol.39 (6), p.6129-6139
Hauptverfasser: Araújo, Ricardo de A., Soares, Sergio, Oliveira, Adriano L.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we propose a hybrid methodology to design morphological-rank-linear (MRL) perceptrons in the problem of software development cost estimation (SDCE). In this methodology, we use a modified genetic algorithm (MGA) to optimize the parameters of the MRL perceptron, as well as to select an optimal input feature subset of the used databases, aiming at a higher accuracy level for SDCE problems. Besides, for each individual of MGA, a gradient steepest descent method is used to further improve the MRL perceptron parameters supplied by MGA. Finally, we conduct an experimental analysis with the proposed methodology using six well-known benchmark databases of software projects, where two relevant performance metrics and a fitness function are used to assess the performance of the proposed methodology, which is compared to classical machine learning models presented in the literature.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2011.11.077