Self-consistent determination of the key spin-transfer torque parameters from spin-wave Doppler experiments

Current-induced magnetization dynamics is governed by a subtle combination of damping, adiabatic, and nonadiabatic spin-transfer torques (STTs). A precise determination of these three key parameters is difficult since they have to be determined in the very same nanostructured sample. In this study,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-01, Vol.89 (2), Article 020403
Hauptverfasser: Chauleau, J.-Y., Bauer, H. G., Körner, H. S., Stigloher, J., Härtinger, M., Woltersdorf, G., Back, C. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current-induced magnetization dynamics is governed by a subtle combination of damping, adiabatic, and nonadiabatic spin-transfer torques (STTs). A precise determination of these three key parameters is difficult since they have to be determined in the very same nanostructured sample. In this study, we experimentally determine the spin-tansfer torque parameters in a fully self-consistent approach by optically accessing current-induced spin-wave dynamics. Our technique allows a precise access to spin-wave characteristics and their current-induced changes, especially the change in decay length which carries the information about the nonadiabaticity. Accessing this quantity allows the implementation of an analytical model which leads to a direct and separate extraction of the three STT key parameters without resorting to micromagnetic simulations.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.89.020403