Enhanced Antistatic and Mechanical Properties of Corona Plasma Treated Wool Fabrics Treated with 2,3-Epoxypropyltrimethylammonium Chloride

In this work, wool fabrics were treated in a corona discharge machine at three different corona intensities and at four fabric speeds. The corona-treated fabrics were subsequently treated with a fiber reactive quaternary ammonium compound, 2,3-epoxypropyltrimethylammonium chloride (EPTAC). The elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2014-07, Vol.53 (27), p.10954-10964
1. Verfasser: Hassan, Mohammad Mahbubul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, wool fabrics were treated in a corona discharge machine at three different corona intensities and at four fabric speeds. The corona-treated fabrics were subsequently treated with a fiber reactive quaternary ammonium compound, 2,3-epoxypropyltrimethylammonium chloride (EPTAC). The electrostatic propensity, tensile strength, wettability, and surface morphologies of the treated fabrics were assessed. The surfaces of modified wool fabrics were characterized by ATR-FTIR and FT-Raman spectroscopies. It was found that corona treatment decreased the electrostatic propensity only to certain levels, but a significant decrease in corona intensity and an increase in hydrophilicity were observed for the corona-treated fabrics further treated with EPTAC. The tensile strength of the corona in combination with EPTAC-treated fabrics considerably increased over the control fabric, but only small differences in tensile strength were observed for the various corona treatments. ATR-FTIR and FT-Raman spectroscopic results confirmed that EPTAC covalently bonded to the wool fiber surface.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie500447p