The Density of Sets Avoiding Distance 1 in Euclidean Space

We improve by an exponential factor the best known asymptotic upper bound for the density of sets avoiding 1 in Euclidean space. This result is obtained by a combination of an analytic bound that is an analog of the Lovász theta number and of a combinatorial argument involving finite subgraphs of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2015-06, Vol.53 (4), p.783-808
Hauptverfasser: Bachoc, Christine, Passuello, Alberto, Thiery, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We improve by an exponential factor the best known asymptotic upper bound for the density of sets avoiding 1 in Euclidean space. This result is obtained by a combination of an analytic bound that is an analog of the Lovász theta number and of a combinatorial argument involving finite subgraphs of the unit distance graph. In turn, we straightforwardly obtain an asymptotic improvement for the measurable chromatic number of Euclidean space. We also tighten previous results for dimensions between 4 and 24.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-015-9668-z