The Density of Sets Avoiding Distance 1 in Euclidean Space
We improve by an exponential factor the best known asymptotic upper bound for the density of sets avoiding 1 in Euclidean space. This result is obtained by a combination of an analytic bound that is an analog of the Lovász theta number and of a combinatorial argument involving finite subgraphs of th...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2015-06, Vol.53 (4), p.783-808 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We improve by an exponential factor the best known asymptotic upper bound for the density of sets avoiding 1 in Euclidean space. This result is obtained by a combination of an analytic bound that is an analog of the Lovász theta number and of a combinatorial argument involving finite subgraphs of the unit distance graph. In turn, we straightforwardly obtain an asymptotic improvement for the measurable chromatic number of Euclidean space. We also tighten previous results for dimensions between 4 and 24. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-015-9668-z |